WHOLE ATMOSPHERE MODELING: CONNECTING TERRESTRIAL AND SPACE WEATHER

At the turn of the century R. G. Roble advanced an ambitious program of developing an atmospheric general circulation model (GCM) extending from the surface to the exosphere. He outlined several areas of research and application to potentially benefit from what is now commonly called whole atmosphere modeling. The purpose of this article is to introduce this new field to a broader geophysical community and document its progress over the last decade. Vertically extended models are commonly built from existing weather and climate GCM codes incorporating a number of approximations, which may no longer be valid. Promising directions of further model development, potential applications, and challenges are outlined. One application is space weather or day‐to‐day and seasonal variability in the ionosphere and thermosphere driven by meteorological processes from below. Various modes of connection between the lower and upper atmosphere had been known before, but new and sometimes unexpected observational evidence has emerged over the last decade. Persistent “nonmigrating” wavy structures in plasma and neutral densities and a dramatic response of the equatorial ionosphere to sudden warmings in the polar winter stratosphere are just two examples. Because large‐scale meteorological processes are predictable several days in advance, whole atmosphere weather prediction models open an opportunity for developing a real forecast capability for space weather.

[1]  R. Roble On the Feasibility of Developing a Global Atmospheric Model Extending from the Ground to the Exosphere , 2013 .

[2]  S. England A Review of the Effects of Non-migrating Atmospheric Tides on the Earth’s Low-Latitude Ionosphere , 2012 .

[3]  T. Fuller‐Rowell,et al.  Did the January 2009 sudden stratospheric warming cool or warm the thermosphere? , 2011 .

[4]  Han L. Liu,et al.  Equatorial and Low Latitude Ionospheric Effects During Sudden Stratospheric Warming Events , 2011, 2011 XXXth URSI General Assembly and Scientific Symposium.

[5]  Timothy Fuller-Rowell,et al.  Forecasting the dynamic and electrodynamic response to the January 2009 sudden stratospheric warming , 2011 .

[6]  M. Yamamoto,et al.  Strong thermospheric cooling during the 2009 major stratosphere warming , 2011 .

[7]  Huixin Liu,et al.  Model study on the formation of the equatorial mass density anomaly in the thermosphere , 2011 .

[8]  H. Juang A Multiconserving Discretization with Enthalpy as a Thermodynamic Prognostic Variable in Generalized Hybrid Vertical Coordinates for the NCEP Global Forecast System , 2011 .

[9]  T. Fuller‐Rowell,et al.  Impact of the altitudinal Joule heating distribution on the thermosphere , 2011 .

[10]  H. Takahashi,et al.  Climatology of the nighttime equatorial thermospheric winds and temperatures over Brazil near solar minimum , 2011 .

[11]  D. Odstrcil,et al.  Wang‐Sheeley‐Arge–Enlil Cone Model Transitions to Operations , 2011 .

[12]  Naoki Terada,et al.  Vertical connection from the tropospheric activities to the ionospheric longitudinal structure simulated by a new Earth's whole atmosphere-ionosphere coupled model , 2011 .

[13]  J. Forbes,et al.  Wave-driven variability in the ionosphere-thermosphere-mesosphere system from TIMED observations: What contributes to the wave 4 ? , 2011 .

[14]  S. Vosper,et al.  Stratospheric gravity waves revealed in NWP model forecasts , 2011 .

[15]  Charles Merrill Swenson,et al.  A comprehensive rocket and radar study of midlatitude spread F , 2010 .

[16]  Astrid Maute,et al.  Thermosphere extension of the Whole Atmosphere Community Climate Model , 2010 .

[17]  D. Hysell,et al.  Three‐dimensional numerical simulation of equatorial F region plasma irregularities with bottomside shear flow , 2010 .

[18]  James M. Russell,et al.  Strong longitudinal variations in the OH nightglow , 2010 .

[19]  T. Fuller‐Rowell,et al.  A whole atmosphere model simulation of the impact of a sudden stratospheric warming on thermosphere dynamics and electrodynamics , 2010 .

[20]  Anthea J. Coster,et al.  Impact of sudden stratospheric warmings on equatorial ionization anomaly , 2010 .

[21]  J. Chau,et al.  Quiet time ionospheric variability over Arecibo during sudden stratospheric warming events , 2010 .

[22]  J. D. Huba,et al.  Global modeling of equatorial plasma bubbles , 2010 .

[23]  M. Iredell,et al.  Midnight density and temperature maxima, and thermospheric dynamics in Whole Atmosphere Model simulations , 2010 .

[24]  E. Araujo‐Pradere,et al.  Sudden stratospheric warming event signatures in daytime ExB drift velocities in the Peruvian and Philippine longitude sectors for January 2003 and 2004 , 2010 .

[25]  J. Forbes,et al.  Longitudinal and geomagnetic activity modulation of the equatorial thermosphere anomaly , 2010 .

[26]  Tsutomu Nagatsuma,et al.  Lunar‐dependent equatorial ionospheric electrodynamic effects during sudden stratospheric warmings , 2010 .

[27]  Uang,et al.  The NCEP Climate Forecast System Reanalysis , 2010 .

[28]  B. Funke,et al.  Evidence for dynamical coupling from the lower atmosphere to the thermosphere during a major stratospheric warming , 2010 .

[29]  J. Forbes,et al.  Longitudinal variation of tides in the MLT region: 1. Tides driven by tropospheric net radiative heating , 2010 .

[30]  J. Forbes,et al.  Longitudinal variation of tides in the MLT region: 2. Relative effects of solar radiative and latent heating , 2010 .

[31]  A. Coster,et al.  Unexpected connections between the stratosphere and ionosphere , 2010 .

[32]  J. Huba,et al.  Modeling of multiple effects of atmospheric tides on the ionosphere: An examination of possible coupling mechanisms responsible for the longitudinal structure of the equatorial ionosphere , 2010 .

[33]  J. Retterer Forecasting low-latitude radio scintillation with 3-D ionospheric plume models: 1. Plume model , 2010 .

[34]  M. Conde,et al.  Thermospheric temperatures above Poker Flat, Alaska, during the stratospheric warming event of January and February 2009 , 2010 .

[35]  K. Hoppel,et al.  Case studies of the mesospheric response to recent minor, major, and extended stratospheric warmings , 2010 .

[36]  H. Fujiwara,et al.  Morphological features and variations of temperature in the upper thermosphere simulated by a whole atmosphere GCM , 2010 .

[37]  V. Fomichev The radiative energy budget of the middle atmosphere and its parameterization in general circulation models , 2009 .

[38]  Jann‐Yenq Liu,et al.  Causal link of the wave-4 structures in plasma density and vertical plasma drift in the low-latitude ionosphere , 2009 .

[39]  M. Yamamoto,et al.  Wave‐4 pattern of the equatorial mass density anomaly: A thermospheric signature of tropical deep convection , 2009 .

[40]  T. Schneider,et al.  WATER VAPOR AND THE DYNAMICS OF CLIMATE CHANGES , 2009, 0908.4410.

[41]  Hitoshi Fujiwara,et al.  Solar terminator wave and its relation to the atmospheric tide , 2009 .

[42]  Hermann Lühr,et al.  A solar terminator wave in thermospheric wind and density simultaneously observed by CHAMP , 2009 .

[43]  T. Fuller‐Rowell,et al.  Midnight temperature maximum (MTM) in Whole Atmosphere Model (WAM) simulations , 2009 .

[44]  Y. Rochon,et al.  A new method of assessing filtering schemes in data assimilation systems , 2009 .

[45]  Jorge L. Chau,et al.  Quiet variability of equatorial E × B drifts during a sudden stratospheric warming event , 2009 .

[46]  K. Hoppel,et al.  High-altitude data assimilation system experiments for the northern summer mesosphere season of 2007 , 2009 .

[47]  J. Forbes,et al.  Tropospheric tides from 80 to 400 km: Propagation, interannual variability, and solar cycle effects , 2009 .

[48]  M. Kunze,et al.  On the remarkable Arctic winter in 2008/2009 , 2009 .

[49]  S. Eckermann Hybrid σ–p Coordinate Choices for a Global Model , 2009 .

[50]  S. Solomon,et al.  Seasonal variation of thermospheric density and composition , 2009 .

[51]  S. Vadas,et al.  Gravity wave penetration into the thermosphere: sensitivity to solar cycle variations and mean winds , 2008 .

[52]  Shunrong Zhang,et al.  Ionospheric signatures of sudden stratospheric warming: Ion temperature at middle latitude , 2008 .

[53]  F. Kamalabadi,et al.  Gravity wave and tidal influences on equatorial spread F based on observations during the Spread F Experiment (SpreadFEx) , 2008 .

[54]  R. Akmaev,et al.  Using enthalpy as a prognostic variable in atmospheric modelling with variable composition , 2008 .

[55]  Kevin Hamilton,et al.  Mesoscale spectrum of atmospheric motions investigated in a very fine resolution global general circulation model , 2008 .

[56]  H. Jin,et al.  Electrodynamics of the formation of ionospheric wave number 4 longitudinal structure , 2008 .

[57]  A. Ridley,et al.  Effect of the altitudinal variation of the gravitational acceleration on the thermosphere simulation , 2008 .

[58]  L. Paxton,et al.  The role of the vertical E × B drift for the formation of the longitudinal plasma density structure in the low-latitude F region , 2008 .

[59]  S. Bruinsma,et al.  A solar terminator wave in thermosphere neutral densities measured by the CHAMP satellite , 2008 .

[60]  William C. Skamarock,et al.  A Linear Analysis of the NCAR CCSM Finite-Volume Dynamical Core , 2008 .

[61]  H.-M. H. Juang,et al.  Impact of terrestrial weather on the upper atmosphere , 2008 .

[62]  M. Faivre,et al.  New results on equatorial thermospheric winds and the midnight temperature maximum , 2008 .

[63]  Masaki Satoh,et al.  Nonhydrostatic icosahedral atmospheric model (NICAM) for global cloud resolving simulations , 2008, J. Comput. Phys..

[64]  J. Forbes,et al.  Tidal variability in the ionospheric dynamo region , 2008 .

[65]  H.-M. H. Juang,et al.  Tidal variability in the lower thermosphere: Comparison of Whole Atmosphere Model (WAM) simulations with observations from TIMED , 2008 .

[66]  Yue Deng,et al.  Assessment of the non‐hydrostatic effect on the upper atmosphere using a general circulation model (GCM) , 2008 .

[67]  J. Huba,et al.  Modeling the longitudinal variation in the post‐sunset far‐ultraviolet OI airglow using the SAMI2 model , 2008 .

[68]  Y. Rochon,et al.  Impact of data assimilation filtering methods on the mesosphere , 2007 .

[69]  Jann‐Yenq Liu,et al.  Longitudinal structure of the equatorial ionosphere: Time evolution of the four-peaked EIA structure , 2007 .

[70]  R. Schunk,et al.  Longitudinal variability of low‐latitude total electron content: Tidal influences , 2007 .

[71]  R. Roble,et al.  Connections between deep tropical clouds and the Earth's ionosphere , 2007 .

[72]  C. Randall,et al.  On recent interannual variability of the Arctic winter mesosphere: Implications for tracer descent , 2007 .

[73]  Hermann Lühr,et al.  Climatology of the equatorial thermospheric mass density anomaly , 2007 .

[74]  S. Maus,et al.  Longitudinal variation of the E‐region electric fields caused by atmospheric tides , 2006 .

[75]  David E. Siskind,et al.  CHEM2D-OPP: A new linearized gas-phase ozone photochemistry parameterization for high-altitude NWP and climate models , 2006 .

[76]  T. Killeen,et al.  Diurnal nonmigrating tides from TIMED Doppler Interferometer wind data: Monthly climatologies and seasonal variations , 2006 .

[77]  S. Oyama,et al.  A two-dimensional simulation of thermospheric vertical winds in the vicinity of an auroral arc , 2006 .

[78]  T. Diehl,et al.  The HAMMONIA Chemistry Climate Model: Sensitivity of the Mesopause Region to the 11-Year Solar Cycle and CO2 Doubling , 2006 .

[79]  Larry J. Paxton,et al.  Control of equatorial ionospheric morphology by atmospheric tides , 2006 .

[80]  Y. Miyoshi Temporal variation of nonmigrating diurnal tide and its relation with the moist convective activity , 2006 .

[81]  J. Meriwether,et al.  Climatology of the midnight temperature maximum phenomenon at Arequipa, Peru , 2006 .

[82]  G. Manney,et al.  NOGAPS-ALPHA Simulations of the 2002 Southern Hemisphere Stratospheric Major Warming , 2006 .

[83]  Harald U. Frey,et al.  Longitudinal structure of the equatorial anomaly in the nighttime ionosphere observed by IMAGE/FUV , 2005 .

[84]  B. Hoskins,et al.  Consistent approximate models of the global atmosphere: shallow, deep, hydrostatic, quasi‐hydrostatic and non‐hydrostatic , 2005 .

[85]  David E. Siskind,et al.  Observations of stratospheric warmings and mesospheric coolings by the TIMED SABER instrument , 2005 .

[86]  A. Staniforth,et al.  A new dynamical core for the Met Office's global and regional modelling of the atmosphere , 2005 .

[87]  D. Siskind,et al.  Modeling the August 2002 minor warming event , 2005 .

[88]  V. Vasyliūnas,et al.  Meaning of ionospheric Joule heating , 2004 .

[89]  J. Curry Thermodynamics of the Atmosphere: A Course in Theoretical Meteorology , 2004 .

[90]  A. M. Clayton,et al.  On the Relationship between Incremental Analysis Updating and Incremental Digital Filtering , 2004 .

[91]  R. Garcia,et al.  Effect of El Niño–Southern Oscillation on the dynamical, thermal, and chemical structure of the middle atmosphere , 2004 .

[92]  G. W. Prölss,et al.  Physics of the Earth’s Space Environment: An Introduction , 2004 .

[93]  R. Heelis,et al.  Electrodynamics in the low and middle latitude ionosphere: a tutorial , 2004 .

[94]  J. Baker,et al.  A self-consistent derivation of ion drag and Joule heating for atmospheric dynamics in the thermosphere , 2004 .

[95]  A. Bott,et al.  Thermodynamics of the Atmosphere by Wilford Zdunkowski , 2004 .

[96]  G. W. Prölss Physics of the Earth’s Space Environment , 2004 .

[97]  T. Fuller‐Rowell,et al.  Dynamic and energetic coupling in the equatorial ionosphere and thermosphere , 2003 .

[98]  Hitoshi Fujiwara,et al.  Day‐to‐day variations of migrating diurnal tide simulated by a GCM from the ground surface to the exobase , 2003 .

[99]  Daniel R. Marsh,et al.  An empirical model of nitric oxide in the lower thermosphere , 2003 .

[100]  M. Alexander,et al.  Gravity wave dynamics and effects in the middle atmosphere , 2003 .

[101]  Jeffrey M. Forbes,et al.  Migrating and nonmigrating semidiurnal tides in the upper atmosphere excited by tropospheric latent heat release: MIGRATING AND NONMIGRATING SEMIDIURNAL TIDES , 2003 .

[102]  Nigel Wood,et al.  The deep‐atmosphere Euler equations with a mass‐based vertical coordinate , 2003 .

[103]  Jeffrey M. Forbes,et al.  Migrating and nonmigrating diurnal tides in the middle and upper atmosphere excited by tropospheric latent heat release , 2002 .

[104]  Raymond G. Roble,et al.  A study of a self-generated stratospheric sudden warming and its mesospheric-lower thermospheric impacts using the coupled TIME-GCM/CCM3 , 2002 .

[105]  D. Drob,et al.  Nrlmsise-00 Empirical Model of the Atmosphere: Statistical Comparisons and Scientific Issues , 2002 .

[106]  T. Shepherd,et al.  Extended Canadian Middle Atmosphere Model: Zonal‐mean climatology and physical parameterizations , 2002 .

[107]  C. McLandress The Seasonal Variation of the Propagating Diurnal Tide in the Mesosphere and Lower Thermosphere. Part I: The Role of Gravity Waves and Planetary Waves , 2002 .

[108]  C. McLandress,et al.  The Seasonal Variation of the Propagating Diurnal Tide in the Mesosphere and Lower Thermosphere. Part II: The Role of Tidal Heating and Zonal Mean Winds , 2002 .

[109]  M. J. Colericoa,et al.  The current state of investigations regarding the thermospheric midnight temperature maximum ( MTM ) , 2002 .

[110]  R. Akmaev Seasonal variations of the terdiurnal tide in the mesosphere and lower thermosphere: A model study , 2001 .

[111]  Kevin Hamilton,et al.  The Horizontal Kinetic Energy Spectrum and Spectral Budget Simulated by a High-Resolution Troposphere–Stratosphere–Mesosphere GCM , 2001 .

[112]  R. Akmaev Simulation of large‐scale dynamics in the mesosphere and lower thermosphere with the Doppler‐spread parameterization of gravity waves: 2. Eddy mixing and the diurnal tide , 2001 .

[113]  R. Akmaev Simulation of large‐scale dynamics in the mesosphere and lower thermosphere with the Doppler‐spread parameterization of gravity waves: 1. Implementation and zonal mean climatologies , 2001 .

[114]  L. Scherliess,et al.  On the variability of equatorial F-region vertical plasma drifts , 2001 .

[115]  Adam A. Scaife,et al.  Realistic quasi‐biennial oscillations in a simulation of the global climate , 2000 .

[116]  Robert W. Schunk,et al.  Ionospheres : physics, plasma physics, and chemistry , 2000 .

[117]  Kevin Hamilton,et al.  Middle Atmosphere Simulated with High Vertical and Horizontal Resolution Versions of a GCM: Improvements in the Cold Pole Bias and Generation of a QBO-like Oscillation in the Tropics , 1999 .

[118]  Dong L. Wu,et al.  Stratospheric tides and data assimilation , 1999 .

[119]  Ludger Scherliess,et al.  Radar and satellite global equatorial F-region vertical drift model , 1999 .

[120]  H. Loon,et al.  The Stratosphere : Phenomena , History and Relevance , 2009 .

[121]  F. S. Johnson,et al.  Occurrence of equatorial F region irregularities: Evidence for tropospheric seeding , 1998 .

[122]  Philip J. Rasch,et al.  MOZART, a global chemical transport model for ozone and related chemical tracers: 1. Model description , 1998 .

[123]  J. Salah,et al.  Climatology and variability of the semidiurnal tide in the lower thermosphere over Millstone Hill , 1998 .

[124]  J. Blanchet,et al.  Matrix parameterization of the 15 μm CO2 band cooling in the middle and upper atmosphere for variable CO2 concentration , 1998 .

[125]  H. Porter,et al.  Seasonal variations of the diurnal tide induced by gravity wave filtering , 1998 .

[126]  T. Fuller‐Rowell The “thermospheric spoon”: A mechanism for the semiannual density variation , 1998 .

[127]  C. McLandress Seasonal variability of the diurnal tide: Results from the Canadian middle atmosphere general circulation model , 1997 .

[128]  Takuji Nakamura,et al.  Short‐period fluctuations of the diurnal tide observed with low‐latitude MF and meteor radars during CADRE: Evidence for gravity wave/tidal interactions , 1997 .

[129]  C. Hines,et al.  The gravity wave Doppler spread theory applied in a numerical spectral model of the middle atmosphere: 2. Equatorial oscillations , 1997 .

[130]  D. Ortland,et al.  SMLTM simulations of the diurnal tide: comparison with UARS observations , 1997 .

[131]  A. J. Simmons,et al.  Stability of a Two-Time-Level Semi-Implicit Integration Scheme for Gravity Wave Motion , 1997 .

[132]  C. O. Hines,et al.  Doppler-spread parameterization of gravity-wave momentum deposition in the middle atmosphere. Part 2: Broad and quasi monochromatic spectra, and implementation , 1997 .

[133]  C. Hines,et al.  Doppler-spread parameterization of gravity-wave momentum deposition in the middle atmosphere. Part 1: Basic formulation , 1997 .

[134]  R. R. Conway,et al.  Seasonal variation of middle atmospheric CH4 and H2O with a new chemical‐dynamical model , 1997 .

[135]  G. Laneve,et al.  Local time and altitude variation of equatorial thermosphere midnight density maximum (MDM): San Marco drag balance measurements , 1997 .

[136]  C. Fesen Simulations of the low‐latitude midnight temperature maximum , 1996 .

[137]  J. L. Scali,et al.  Coordinated measurements of F region dynamics related to the thermospheric midnight temperature maximum , 1996 .

[138]  Theodore G. Shepherd,et al.  Sponge layer feedbacks in middle‐atmosphere models , 1996 .

[139]  A. Broad High-resolution numerical-model integrations to validate gravity-wave-drag parametrization schemes : A case-study , 1996 .

[140]  J. Forbes,et al.  Simulation of tides with a spectral mesosphere/lower thermosphere model , 1996 .

[141]  Lawrence L. Takacs,et al.  Data Assimilation Using Incremental Analysis Updates , 1996 .

[142]  C. Williams,et al.  Diurnal nonmigrating tidal oscillations forced by deep convective clouds , 1996 .

[143]  Peter Lynch,et al.  Diabatic initialization using recursive filters , 1994 .

[144]  Y. Yoshida,et al.  Dynamic coupling between the lower and upper atmosphere by tides and gravity waves , 1993 .

[145]  G. Shved,et al.  Influence of latitudinal and longitudinal variations of ozone and water vapour on the solar semidiurnal tide , 1993 .

[146]  Peter Lynch,et al.  Initialization of the HIRLAM Model Using a Digital Filter , 1992 .

[147]  J. Forbes,et al.  Quasi 16-day oscillation in the ionosphere , 1992 .

[148]  Peiyan Chen Two‐day oscillation of the equatorial ionization anomaly , 1992 .

[149]  V. Fomichev,et al.  Simulation of the zonal mean climatology of the middle atmosphere with a three-dimensional spectral model for solstice and equinox conditions , 1992 .

[150]  J. St.‐Maurice,et al.  Two-dimensional high-latitude thermospheric modeling: A comparison between moderate and extremely disturbed conditions , 1991 .

[151]  R. Daley Atmospheric Data Analysis , 1991 .

[152]  Keith P. Shine,et al.  On the “Downward Control” of Extratropical Diabatic Circulations by Eddy-Induced Mean Zonal Forces , 1991 .

[153]  J. G. Charney,et al.  On the Scale of Atmospheric Motions , 1990 .

[154]  W. Wergen Normal mode initialization and atmospheric tides , 1989 .

[155]  Norman A. McFarlane,et al.  The Effect of Orographically Excited Gravity Wave Drag on the General Circulation of the Lower Stratosphere and Troposphere , 1987 .

[156]  Steve Smith,et al.  Evidence for a Saturated Spectrum of Atmospheric Gravity Waves. , 1987 .

[157]  I. Yagai,et al.  Atmospheric Tides Appearing in a Global Atmospheric General Circulation Model , 1987 .

[158]  T. Palmer,et al.  Alleviation of a systematic westerly bias in general circulation and numerical weather prediction models through an orographic gravity wave drag parametrization , 1986 .

[159]  J. Holton The Influence of Gravity Wave Breaking on the General Circulation of the Middle Atmosphere , 1983 .

[160]  T. Fuller‐Rowell,et al.  Derivation of a conservation equation for mean molecular weight for a two-constituent gas within a three-dimensional, time-dependent model of the thermosphere , 1983 .

[161]  S. Quegan,et al.  A theoretical study of the distribution of ionization in the high-latitude ionosphere and the plasmasphere - First results on the mid-latitude trough and the light-ion trough , 1982 .

[162]  J. Holton,et al.  The Role of Gravity Wave Induced Drag and Diffusion in the Momentum Budget of the Mesosphere , 1982 .

[163]  T. Matsuno A Quasi One-Dimensional Model of the Middle Atmosphere Circulation Interacting with Internal Gravity Waves , 1982 .

[164]  K. Labitzke Stratospheric-mesospheric midwinter disturbances - A summary of observed characteristics , 1981 .

[165]  R. Lindzen Turbulence and stress owing to gravity wave and tidal breakdown , 1981 .

[166]  G. Walker Longitudinal structure of the F-region equatorial anomaly - a review. , 1981 .

[167]  D. Anderson Modeling the ambient, low latitude F-region ionosphere—a review , 1981 .

[168]  R. Bernard Variability of die semi-diurnal tide in the upper mesosphere , 1981 .

[169]  K. Hamilton Latent Heat Release as a Possible Forcing Mechanism for Atmospheric Tides , 1981 .

[170]  Eh. S. Kazimirovskij,et al.  The earth's ionosphere. , 1981 .

[171]  T. Fuller‐Rowell,et al.  A Three-Dimensional Time-Dependent Global Model of the Thermosphere , 1980 .

[172]  J. D. Mahlman,et al.  Stratospheric Sensitivity to Perturbations in Ozone and Carbon Dioxide: Radiative and Dynamical Response. , 1980 .

[173]  Joseph Sela,et al.  Spectral Modeling at the National Meteorological Center , 1980 .

[174]  H. Carlson,et al.  Tides and the midnight temperature anomaly in the thermosphere , 1979 .

[175]  N. Spencer,et al.  The midnight temperature maximum in the Earth's equatorial thermosphere , 1979 .

[176]  David Burridge,et al.  Stability of the Semi-Implicit Method of Time Integration , 1978 .

[177]  Jürgen Röttger,et al.  Travelling disturbances in the equatorial ionosphere and their association with penetrative cumulus convection , 1977 .

[178]  H. Volland,et al.  Theoretical aspects of tidal and planetary wave propagation at thermospheric heights , 1977 .

[179]  Akio Arakawa,et al.  Computational Design of the Basic Dynamical Processes of the UCLA General Circulation Model , 1977 .

[180]  Y. Chiu An improved phenomenological model of ionospheric density , 1975 .

[181]  A. Richmond,et al.  Thermospheric response to a magnetic substorm , 1975 .

[182]  William Bourke,et al.  A multi-level spectral model. I. Formulation and hemispheric integrations , 1974 .

[183]  P. C. Kendall,et al.  Electrical coupling of the E- and F-regions and its effect on F-region drifts and winds , 1974 .

[184]  R. Behnke,et al.  Vector measurements of F region ion transport at Arecibo , 1973 .

[185]  R. Harper Nighttime meridional neutral winds near 350 km at low to mid-latitudes , 1973 .

[186]  A. Hedin,et al.  Magnetic control of the near equatorial neutral thermosphere , 1973 .

[187]  H. Volland,et al.  A three-dimensional model of thermosphere dynamics—I. Heat input and eigenfunctions , 1972 .

[188]  K. Labitzke Temperature Changes in the Mesosphere and Stratosphere Connected with Circulation Changes in Winter , 1972 .

[189]  A. Robert,et al.  An Implicit Time Integration Scheme for Baroclinic Models of the Atmosphere , 1972 .

[190]  M. Geller Atmospheric tides—Thermal and gravitational , 1972 .

[191]  G. E. Cook The semi-annual variation in the upper atmosphere: A review. , 1969 .

[192]  George Veronis,et al.  Comments on Phillips' Proposed Simplification of the Equations of Motion for a Shallow Rotating Atmosphere , 1968 .

[193]  F. Bretherton,et al.  Wavetrains in inhomogeneous moving media , 1968, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.

[194]  R. J. Moffett,et al.  lonization transport effects in the equatorial F region , 1966 .

[195]  Norman A. Phillips,et al.  The Equations of Motion for a Shallow Rotating Atmosphere and the “Traditional Approximation” , 1966 .

[196]  C. Leovy Simple Models of Thermally Driven Mesopheric Circulation , 1964 .

[197]  B. Haurwitz Frictional effects and the meridional circulation in the mesosphere , 1961 .

[198]  H. Paetzold,et al.  An annual and a semiannual variation of the upper air density , 1961 .

[199]  C. Hines INTERNAL ATMOSPHERIC GRAVITY WAVES AT IONOSPHERIC HEIGHTS , 1960 .

[200]  E. Lorenz Energy and Numerical Weather Prediction , 1960 .

[201]  D. Martyn The Normal F Region of the Ionosphere , 1959, Proceedings of the IRE.

[202]  D. F. Martyn Electric currents in the ionosphere - Ionization drift due to winds and electric fields , 1953, Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences.

[203]  D. F. Martyn Cellular atmospheric waves in the ionosphere and troposphere , 1950, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.

[204]  E. Appleton,et al.  Two Anomalies in the Ionosphere , 1946, Nature.

[205]  G. B. The Dynamical Theory of Gases , 1916, Nature.