A Construction of New Quantum MDS Codes

It has been a great challenge to construct new quantum maximum-distance-separable (MDS) codes. In particular, it is very hard to construct the quantum MDS codes with relatively large minimum distance. So far, except for some sparse lengths, all known q-ary quantum MDS codes have minimum distance ≤q/2 + 1. In this paper, we provide a construction of the quantum MDS codes with minimum distance >q/2 + 1. In particular, we show the existence of the q-ary quantum MDS codes with length n = q2 + 1 and minimum distance d for any d q + 1 (this result extends those given in the works of Guardia (2011), Jin et al. (2010), and Kai an Zhu (2012)); and with length (q2 + 2)/3 and minimum distance d for any d (2q+2)/3 if 3|(q + 1). Our method is through Hermitian selforthogonal codes. The main idea of constructing the Hermitian self-orthogonal codes is based on the solvability in Fq of a system of homogenous equations over Fq2.

[1]  Shor,et al.  Scheme for reducing decoherence in quantum computer memory. , 1995, Physical review. A, Atomic, molecular, and optical physics.

[2]  T. Beth,et al.  On optimal quantum codes , 2003, quant-ph/0312164.

[3]  Henning Stichtenoth,et al.  Algebraic function fields and codes , 1993, Universitext.

[4]  Hao Chen,et al.  Quantum codes from concatenated algebraic-geometric codes , 2005, IEEE Transactions on Information Theory.

[5]  Martin Rötteler,et al.  On quantum MDS codes , 2004, International Symposium onInformation Theory, 2004. ISIT 2004. Proceedings..

[6]  N. J. A. Sloane,et al.  Quantum Error Correction Via Codes Over GF(4) , 1998, IEEE Trans. Inf. Theory.

[7]  Pradeep Kiran Sarvepalli,et al.  Nonbinary quantum Reed-Muller codes , 2005, Proceedings. International Symposium on Information Theory, 2005. ISIT 2005..

[8]  Eric M. Rains Nonbinary quantum codes , 1999, IEEE Trans. Inf. Theory.

[9]  Keqin Feng,et al.  Quantum codes [[6, 2, 3]]p and [[7, 3, 3]]p (p >= 3) exist , 2002, IEEE Trans. Inf. Theory.

[10]  Santosh Kumar,et al.  Nonbinary Stabilizer Codes Over Finite Fields , 2005, IEEE Transactions on Information Theory.

[11]  Chaoping Xing,et al.  Coding Theory: A First Course , 2004 .

[12]  Qing Chen,et al.  Graphical Nonbinary Quantum Error-Correcting Codes , 2008 .

[13]  Andrew M. Steane Enlargement of Calderbank-Shor-Steane quantum codes , 1999, IEEE Trans. Inf. Theory.

[14]  Y. Edel,et al.  Quantum twisted codes , 2000 .

[15]  Zongben Xu,et al.  On [[n,n-4,3]]q Quantum MDS Codes for odd prime power q , 2009, ArXiv.

[16]  Chaoping Xing,et al.  Asymptotic bounds on quantum codes from algebraic geometry codes , 2006, IEEE Transactions on Information Theory.

[17]  Chaoping Xing,et al.  Application of Classical Hermitian Self-Orthogonal MDS Codes to Quantum MDS Codes , 2010, IEEE Transactions on Information Theory.

[18]  Chaoping Xing,et al.  Coding Theory: Index , 2004 .

[19]  Pradeep Kiran Sarvepalli,et al.  On Quantum and Classical BCH Codes , 2006, IEEE Transactions on Information Theory.

[20]  N. Sloane,et al.  Quantum Error Correction Via Codes Over GF , 1998 .

[21]  Giuliano G. La Guardia,et al.  New Quantum MDS Codes , 2011, IEEE Transactions on Information Theory.

[22]  Shixin Zhu,et al.  New Quantum MDS Codes From Negacyclic Codes , 2013, IEEE Transactions on Information Theory.

[23]  Zhuo Li,et al.  Quantum generalized Reed-Solomon codes: Unified framework for quantum MDS codes , 2008, ArXiv.

[24]  Alexei E. Ashikhmin,et al.  Nonbinary quantum stabilizer codes , 2001, IEEE Trans. Inf. Theory.