Testing genuine multipartite nonlocality in phase space

We demonstrate genuine three-mode nonlocality based on phase-space formalism. A Svetlichny-type Bell inequality is formulated in terms of the s-parametrized quasiprobability function. We test such a tool using exemplary forms of three-mode entangled states, identifying the ideal measurement settings required for each state. We thus verify the presence of genuine three-mode nonlocality that cannot be reproduced by local or nonlocal hidden variable models between any two out of three modes. In our results, GHZ- and W-type nonlocality can be fully discriminated. We also study the behavior of genuine tripartite nonlocality under the effects of detection inefficiency and dissipation induced by local thermal environments. Our formalism can be useful to test the sharing of genuine multipartite quantum correlations among the elements of some interesting physical settings, including arrays of trapped ions and intracavity ultracold atoms.

[1]  Svetlichny,et al.  Distinguishing three-body from two-body nonseparability by a Bell-type inequality. , 1987, Physical review. D, Particles and fields.

[2]  P. Grangier,et al.  Experimental Realization of Einstein-Podolsky-Rosen-Bohm Gedankenexperiment : A New Violation of Bell's Inequalities , 1982 .

[3]  Mauro Paternostro,et al.  Tripartite nonlocality and continuous-variable entanglement in thermal states of trapped ions , 2011 .

[4]  Thierry Paul,et al.  Quantum computation and quantum information , 2007, Mathematical Structures in Computer Science.

[5]  N. Bohr II - Can Quantum-Mechanical Description of Physical Reality be Considered Complete? , 1935 .

[6]  Gerd Leuchs,et al.  Quantum information with continuous variables of atoms and light , 2007 .

[7]  F. Schmidt-Kaler,et al.  Designing spin-spin interactions with one and two dimensional ion crystals in planar micro traps , 2011, 1102.3645.

[8]  M. B. Plenio,et al.  Manipulating the quantum information of the radial modes of trapped ions: linear phononics, entanglement generation, quantum state transmission and non-locality tests , 2008, 0809.4287.

[9]  J. Ignacio Cirac,et al.  Optically Levitating Dielectrics in the Quantum Regime: Theory and Protocols , 2010, 1010.3109.

[10]  J Eisert,et al.  Creating and probing multipartite macroscopic entanglement with light. , 2007, Physical review letters.

[11]  Jinhyoung Lee,et al.  Dynamics of nonlocality for a two-mode squeezed state in a thermal environment , 2000, quant-ph/0003077.

[12]  Banaszek,et al.  Direct probing of quantum phase space by photon counting. , 1996, Physical review letters.

[13]  J. Lavoie,et al.  Experimental violation of Svetlichny's inequality , 2009, 0909.0789.

[14]  Marek Zukowski,et al.  Experimental violation of local realism by four-photon Greenberger-Horne-Zeilinger entanglement. , 2003, Physical review letters.

[15]  D. Hunger,et al.  Coupling ultracold atoms to mechanical oscillators , 2011, 1103.1820.

[16]  M. Paternostro,et al.  Entanglement detection in hybrid optomechanical systems , 2011, 1105.0513.

[17]  Seung-Woo Lee,et al.  Testing quantum nonlocality by generalized quasiprobability functions , 2009, 0908.0541.

[18]  M. Barbieri,et al.  Multipartite optomechanical entanglement from competing nonlinearities , 2012, 1204.5870.

[19]  W. Son,et al.  Test of nonlocality for a continuous-variable state based on an arbitrary number of measurement outcomes. , 2006, Physical review letters.

[20]  M. Horne,et al.  Experimental Consequences of Objective Local Theories , 1974 .

[21]  Nicolas Gisin,et al.  Detecting genuine multipartite quantum nonlocality: a simple approach and generalization to arbitrary dimensions. , 2010, Physical review letters.

[22]  P. van Loock,et al.  Quantum Communication with Continuous Variables , 2002 .

[23]  Gerard J. Milburn,et al.  Quantum dynamics of an atomic Bose-Einstein condensate in a double-well potential , 1997 .

[24]  Samuel L. Braunstein,et al.  Greenberger-Horne-Zeilinger nonlocality in phase space , 2000, quant-ph/0006029.

[25]  Knight,et al.  Series representation of quantum-field quasiprobabilities. , 1993, Physical review. A, Atomic, molecular, and optical physics.

[26]  Seung-Woo Lee,et al.  Maximal violation of tight Bell inequalities for maximal high-dimensional entanglement , 2008, 0803.3097.

[27]  R. Mcweeny On the Einstein-Podolsky-Rosen Paradox , 2000 .

[28]  Braunstein,et al.  Multipartite entanglement for continuous variables: A quantum teleportation network , 1999, Physical review letters.

[29]  M. Scully,et al.  The Quantum Theory of Light , 1974 .

[30]  G. Morigi,et al.  Stability and dynamics of ion rings in linear multipole traps , 2012, 1211.2931.

[31]  M. Paris,et al.  Nonlocality of two- and three-mode continuous variable systems , 2004, quant-ph/0410194.

[32]  Alessio Serafini,et al.  Generation of continuous variable squeezing and entanglement of trapped ions in time-varying potentials , 2009, Quantum Inf. Process..

[33]  M. Paternostro,et al.  Cold-atom-induced control of an optomechanical device. , 2010, Physical review letters.

[34]  Hyunseok Jeong,et al.  Witnessing entanglement in phase space using inefficient detectors , 2009, 0904.1058.

[35]  Kevin Cahill,et al.  Ordered Expansions in Boson Amplitude Operators , 1969 .

[36]  Seung-Woo Lee,et al.  High-dimensional Bell test for a continuous-variable state in phase space and its robustness to detection inefficiency , 2010, 1006.4012.

[37]  Hidehiro Yonezawa,et al.  Experimental creation of a fully inseparable tripartite continuous-variable state. , 2003, Physical review letters.

[38]  T. Monz,et al.  14-Qubit entanglement: creation and coherence. , 2010, Physical review letters.

[39]  Kiel T. Williams,et al.  Extreme quantum entanglement in a superposition of macroscopically distinct states. , 1990, Physical review letters.

[40]  Nguyen Ba An,et al.  Greenberger-Horne-Zeilinger-type and W-type entangled coherent states: Generation and Bell-type inequality tests without photon counting , 2006, quant-ph/0606109.

[41]  Konrad Banaszek,et al.  Nonlocality of the Einstein-Podolsky-Rosen state in the Wigner representation , 1998 .

[42]  A. Shimony,et al.  Proposed Experiment to Test Local Hidden Variable Theories. , 1969 .