Linear quantum feedback networks with squeezing components
暂无分享,去创建一个
[1] M. R. James,et al. Quantum Feedback Networks: Hamiltonian Formulation , 2008, 0804.3442.
[2] David Shale,et al. LINEAR SYMMETRIES OF FREE BOSON FIELDS( , 1962 .
[3] Applications of canonical transformations , 2004, quant-ph/0410209.
[4] Matthew R. James,et al. The Series Product and Its Application to Quantum Feedforward and Feedback Networks , 2007, IEEE Transactions on Automatic Control.
[5] Hendra Ishwara Nurdin,et al. Network Synthesis of Linear Dynamical Quantum Stochastic Systems , 2008, SIAM J. Control. Optim..
[6] Timothy C. Ralph,et al. A Guide to Experiments in Quantum Optics , 1998 .
[7] A. Neumaier,et al. LETTER TO THE EDITOR: Explicit effective Hamiltonians for general linear quantum-optical networks , 2003 .
[8] M. Zwaan. An introduction to hilbert space , 1990 .
[9] B. Muzykantskii,et al. ON QUANTUM NOISE , 1995 .
[10] M.R. James,et al. $H^{\infty}$ Control of Linear Quantum Stochastic Systems , 2008, IEEE Transactions on Automatic Control.
[11] M. R. James,et al. Squeezing Components in Linear Quantum Feedback Networks , 2009, 0906.4860.
[12] Hidenori Kimura,et al. Transfer function approach to quantum control-part I: Dynamics of quantum feedback systems , 2003, IEEE Trans. Autom. Control..
[13] Ian R. Petersen,et al. Coherent H∞ control for a class of linear complex quantum systems , 2009, 2009 American Control Conference.
[14] Robin L. Hudson,et al. Quantum Ito's formula and stochastic evolutions , 1984 .
[15] M.R. James,et al. H∞ Control of Linear Quantum Systems , 2006, Proceedings of the 45th IEEE Conference on Decision and Control.
[16] M. Yanagisawa,et al. Linear quantum feedback networks , 2008 .
[17] J. Doyle,et al. Robust and optimal control , 1995, Proceedings of 35th IEEE Conference on Decision and Control.
[18] Collett,et al. Input and output in damped quantum systems: Quantum stochastic differential equations and the master equation. , 1985, Physical review. A, General physics.