SAT-Based Approaches to Treewidth Computation: An Evaluation

Tree width is an important structural property of graphs, tightly connected to computational tractability in eg various constraint satisfaction formalisms such as constraint programming, Boolean satisfiability, and answer set programming, as well as probabilistic inference, for instance. An obstacle to harnessing tree width as a way to efficiently solving bounded tree width instances of NP-hard problems is that deciding tree width, and hence computing an optimal tree-decomposition, is in itself an NP-complete problem. In this paper, we study the applicability of Boolean satisfiability (SAT) based approaches to determining the tree widths of graphs, and at the same time obtaining an associated optimal tree-decomposition. Extending earlier studies, we evaluate various SAT and Max SAT based strategies for tree width computation, and compare these approaches to practical dedicated exact algorithms for the problem.

[1]  Phokion G. Kolaitis,et al.  Constraint Satisfaction, Bounded Treewidth, and Finite-Variable Logics , 2002, CP.

[2]  Rina Dechter,et al.  Bucket Elimination: A Unifying Framework for Reasoning , 1999, Artif. Intell..

[3]  Hubie Chen,et al.  Quantified Constraint Satisfaction and Bounded Treewidth , 2004, ECAI.

[4]  Arie M. C. A. Koster,et al.  Treewidth computations II. Lower bounds , 2011, Inf. Comput..

[5]  Bengt Aspvall,et al.  Memory Requirements for Table Computations in Partial \sl k -Tree Algorithms , 2000, Algorithmica.

[6]  Helmut Veith,et al.  Encoding Treewidth into SAT , 2009, SAT.

[7]  Niklas Sörensson,et al.  An Extensible SAT-solver , 2003, SAT.

[8]  Arie M. C. A. Koster,et al.  Solving partial constraint satisfaction problems with tree decomposition , 2002, Networks.

[9]  Eugene L. Lawler,et al.  Linear-Time Computation of Optimal Subgraphs of Decomposable Graphs , 1987, J. Algorithms.

[10]  Georg Gottlob,et al.  Tractable Optimization Problems through Hypergraph-Based Structural Restrictions , 2009, ICALP.

[11]  Brighten Godfrey,et al.  Approximate distance queries and compact routing in sparse graphs , 2011, 2011 Proceedings IEEE INFOCOM.

[12]  Dimitrios M. Thilikos,et al.  On exact algorithms for treewidth , 2006, TALG.

[13]  Vibhav Gogate,et al.  A Complete Anytime Algorithm for Treewidth , 2004, UAI.

[14]  Eyal Amir,et al.  Efficient Approximation for Triangulation of Minimum Treewidth , 2001, UAI.

[15]  Felip Manyà,et al.  Exploiting Cycle Structures in Max-SAT , 2009, SAT.

[16]  Brandon M. Malone,et al.  Learning Optimal Bounded Treewidth Bayesian Networks via Maximum Satisfiability , 2014, AISTATS.

[17]  Ramm,et al.  Fixed-Parameter Algorithms in Phylogenetics , 2007 .

[18]  David J. Spiegelhalter,et al.  Local computations with probabilities on graphical structures and their application to expert systems , 1990 .

[19]  Joao Marques-Silva,et al.  Core-Guided Binary Search Algorithms for Maximum Satisfiability , 2011, AAAI.

[20]  Xiuzhen Huang,et al.  Parameterized Graph Problems in Computational Biology , 2007, Second International Multi-Symposiums on Computer and Computational Sciences (IMSCCS 2007).

[21]  Mikkel Thorup,et al.  All Structured Programs have Small Tree-Width and Good Register Allocation , 1998, Inf. Comput..

[22]  Dan Geiger,et al.  A sufficiently fast algorithm for finding close to optimal junction trees , 1996, UAI.

[23]  Albert Oliveras,et al.  Cardinality Networks: a theoretical and empirical study , 2011, Constraints.

[24]  Johann A. Makowsky,et al.  Counting truth assignments of formulas of bounded tree-width or clique-width , 2008, Discret. Appl. Math..

[25]  Stefan Arnborg,et al.  Linear time algorithms for NP-hard problems restricted to partial k-trees , 1989, Discret. Appl. Math..

[26]  Stefan Woltran,et al.  D-FLAT: Declarative problem solving using tree decompositions and answer-set programming , 2012, Theory and Practice of Logic Programming.

[27]  Stefan Szeider,et al.  Model Counting for Formulas of Bounded Clique-Width , 2013, ISAAC.

[28]  Craig A. Tovey,et al.  Solving problems on recursively constructed graphs , 2009, CSUR.

[29]  Hans L. Bodlaender,et al.  Discovering Treewidth , 2005, SOFSEM.

[30]  Gilles Audemard,et al.  Improving Glucose for Incremental SAT Solving with Assumptions: Application to MUS Extraction , 2013, SAT.

[31]  Albert Oliveras,et al.  A Parametric Approach for Smaller and Better Encodings of Cardinality Constraints , 2013, CP.

[32]  Arie M. C. A. Koster,et al.  Treewidth computations I. Upper bounds , 2010, Inf. Comput..

[33]  Bengt Aspvall,et al.  Memory Requirements for Table Computations in Partial k-tree Algorithms , 1998, SWAT.

[34]  Vasco M. Manquinho,et al.  On Partitioning for Maximum Satisfiability , 2012, ECAI.

[35]  Joao Marques-Silva,et al.  Improvements to Core-Guided Binary Search for MaxSAT , 2012, SAT.

[36]  Fahiem Bacchus,et al.  Exploiting the Power of mip Solvers in maxsat , 2013, SAT.

[37]  Derek G. Corneil,et al.  Complexity of finding embeddings in a k -tree , 1987 .

[38]  Zhengxin Chen,et al.  Influenza a virus informatics: genotype-centered database and genotype annotation , 2007 .