暂无分享,去创建一个
[1] Wotao Yin,et al. A feasible method for optimization with orthogonality constraints , 2013, Math. Program..
[2] Andrzej Cichocki,et al. Tensor Deflation for CANDECOMP/PARAFAC— Part I: Alternating Subspace Update Algorithm , 2015, IEEE Transactions on Signal Processing.
[3] Pierre Comon,et al. Subtracting a best rank-1 approximation may increase tensor rank , 2009, 2009 17th European Signal Processing Conference.
[4] P. Comon,et al. Tensor decompositions, alternating least squares and other tales , 2009 .
[5] Andrzej Cichocki,et al. Nonnegative Matrix and Tensor Factorization T , 2007 .
[6] Zbynek Koldovský,et al. Cramér-Rao-Induced Bounds for CANDECOMP/PARAFAC Tensor Decomposition , 2012, IEEE Transactions on Signal Processing.
[7] B. Kowalski,et al. Tensorial resolution: A direct trilinear decomposition , 1990 .
[8] Andrzej Cichocki,et al. On Fast algorithms for orthogonal Tucker decomposition , 2014, 2014 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP).
[9] W. Marsden. I and J , 2012 .
[10] Andrzej Cichocki,et al. Deflation method for CANDECOMP/PARAFAC tensor decomposition , 2014, 2014 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP).
[11] Joos Vandewalle,et al. On the Best Rank-1 and Rank-(R1 , R2, ... , RN) Approximation of Higher-Order Tensors , 2000, SIAM J. Matrix Anal. Appl..
[12] Lieven De Lathauwer,et al. Structured Data Fusion , 2015, IEEE Journal of Selected Topics in Signal Processing.
[13] Lieven De Lathauwer,et al. Decompositions of a Higher-Order Tensor in Block Terms - Part III: Alternating Least Squares Algorithms , 2008, SIAM J. Matrix Anal. Appl..
[14] Andrzej Cichocki,et al. Fast Alternating LS Algorithms for High Order CANDECOMP/PARAFAC Tensor Factorizations , 2013, IEEE Transactions on Signal Processing.
[15] Andrzej Cichocki,et al. Tensor Deflation for CANDECOMP/PARAFAC— Part II: Initialization and Error Analysis , 2015, IEEE Transactions on Signal Processing.
[16] Andrzej Cichocki,et al. Low Complexity Damped Gauss-Newton Algorithms for CANDECOMP/PARAFAC , 2012, SIAM J. Matrix Anal. Appl..
[17] J. Borwein,et al. Two-Point Step Size Gradient Methods , 1988 .