Microwave sintering improves the mechanical properties of biphasic calcium phosphates from hydroxyapatite microspheres produced from hydrothermal processing

[1]  R. Kesavamoorthy,et al.  Hydrothermal synthesis of porous triphasic hydroxyapatite/(α and β) tricalcium phosphate , 2009, Journal of materials science. Materials in medicine.

[2]  C. Tang,et al.  Influence of microstructure and phase composition on the nanoindentation characterization of bioceramic materials based on hydroxyapatite , 2009 .

[3]  I. Mihailescu,et al.  Processing of dense nanostructured HAP ceramics by sintering and hot pressing , 2009 .

[4]  J. Chevalier,et al.  Ceramics for medical applications: A picture for the next 20 years , 2009 .

[5]  A. Leriche,et al.  Manufacture of hydroxyapatite beads for medical applications , 2009 .

[6]  A. Bandyopadhyay,et al.  Hydroxyapatite nanopowders: Synthesis, densification and cell–materials interaction , 2007 .

[7]  I. Janković-Častvan,et al.  Synthesis of nanosized calcium hydroxyapatite particles by the catalytic decomposition of urea with urease , 2007 .

[8]  I. Janković-Častvan,et al.  Sintering Behaviour of Nanosized HAP Powder , 2007 .

[9]  I. Sevostianov,et al.  Dependence of the mechanical properties of sintered hydroxyapatite on the sintering temperature , 2006 .

[10]  M. Barbosa,et al.  Preparation and characterisation of calcium-phosphate porous microspheres with a uniform size for biomedical applications , 2006, Journal of materials science. Materials in medicine.

[11]  Xinlong Wang,et al.  Fabrication and characterization of porous hydroxyapatite/β-tricalcium phosphate ceramics by microwave sintering , 2006 .

[12]  K. Khor,et al.  Microstructure and mechanical properties of spark plasma sintered zirconia-hydroxyapatite nano-composite powders , 2005 .

[13]  H. Uchida,et al.  Development of porous ceramics with well-controlled porosities and pore sizes from apatite fibers and their evaluations , 2004, Journal of materials science. Materials in medicine.

[14]  K. Gross,et al.  Sintered hydroxyfluorapatites. Part III: sintering and resultant mechanical properties of sintered blends of hydroxyapatite and fluorapatite. , 2004, Biomaterials.

[15]  K. Gross,et al.  Sintered hydroxyfluorapatites. Part II: mechanical properties of solid solutions determined by microindentation. , 2004, Biomaterials.

[16]  S. Bose,et al.  Synthesis of Hydroxyapatite Nanopowders via Sucrose‐Templated Sol–Gel Method , 2003 .

[17]  J. P. LeGeros,et al.  Biphasic calcium phosphate bioceramics: preparation, properties and applications , 2003, Journal of materials science. Materials in medicine.

[18]  Egon Matijević,et al.  Homogeneous Precipitation by Enzyme-Catalyzed Reactions. 2. Strontium and Barium Carbonates† , 2003 .

[19]  H. Varma,et al.  Microwave sintering of nanosized hydroxyapatite powder compacts , 2002 .

[20]  V. Privman,et al.  Formation of monodispersed cadmium sulfide particles by aggregation of nanosize precursors , 2002, cond-mat/0204192.

[21]  D. Bernache-Assollant,et al.  Calcium phosphate apatites with variable Ca/P atomic ratio III. Mechanical properties and degradation in solution of hot pressed ceramics. , 2002, Biomaterials.

[22]  D. Bernache-Assollant,et al.  Calcium phosphate apatites with variable Ca/P atomic ratio II. Calcination and sintering. , 2002, Biomaterials.

[23]  V. Privman,et al.  Model of Formation of Monodispersed Colloids , 2001, cond-mat/0102079.

[24]  E. Landi,et al.  Densification behaviour and mechanisms of synthetic hydroxyapatites , 2000 .

[25]  W. Bonfield,et al.  Effect of sintering parameters on the density and microstructure of carbonate hydroxyapatite , 2000, Journal of materials science. Materials in medicine.

[26]  D. Uskoković,et al.  Influence of Synthesis Parameters on the Particle Sizes of Nanostructured Calcium-Hydroxyapatite , 2000 .

[27]  S. Ramesh,et al.  Effects of Sintering Temperature on the Properties of Hydroxyapatite , 2000 .

[28]  K. Itatani,et al.  Characterization of hydroxyapatite powders prepared by ultrasonic spray-pyrolysis technique , 1999 .

[29]  E. Matijević,et al.  Tailoring the particle size of monodispersed colloidal gold , 1999 .

[30]  Park,et al.  Mechanism of Formation of Monodispersed Colloids by Aggregation of Nanosize Precursors. , 1998, Journal of colloid and interface science.

[31]  R. R. Rao,et al.  Solid state synthesis and thermal stability of HAP and HAP – β-TCP composite ceramic powders , 1997, Journal of materials science. Materials in medicine.

[32]  F. Delannay,et al.  The influence of high sintering temperatures on the mechanical properties of hydroxylapatite , 1995 .

[33]  Y. Fujishiro,et al.  Coating of hydroxyapatite on metal plates using thermal dissociation of calcium-EDTA chelate in phosphate solutions under hydrothermal conditions , 1995 .

[34]  Rustum Roy,et al.  Microwave sintering of hydroxyapatite ceramics , 1994 .

[35]  Larry L. Hench,et al.  Bioceramics: From Concept to Clinic , 1991 .

[36]  B. Lawn,et al.  Hardness, Toughness, and Brittleness: An Indentation Analysis , 1979 .

[37]  E. A. Charles,et al.  Fracture Toughness Determinations by Indentation , 1976 .

[38]  B. Lawn,et al.  Brittleness as an indentation size effect , 1976 .

[39]  F. Tancret,et al.  Modelling the mechanical properties of microporous and macroporous biphasic calcium phosphate bioceramics , 2006 .

[40]  F. Gnanam,et al.  The effect of powder processing on densification, microstructure and mechanical properties of hydroxyapatite , 2002 .

[41]  E. Matijević Preparation and characterization of well defined powders and their applications in technology , 1998 .

[42]  J. Ilavsky,et al.  Plasma-sprayed aluminium coating , 1992 .

[43]  W. Sutton,et al.  Microwave processing of ceramic materials , 1989 .

[44]  William D. Callister,et al.  Materials Science and Engineering: An Introduction , 1985 .