A Convex Approach to Superresolution and Regularization of Lines in Images

We present a new convex formulation for the problem of recovering lines in degraded images. Following the recent paradigm of super-resolution, we formulate a dedicated atomic norm penalty and we solve this optimization problem by means of a primal-dual algorithm. This parsimonious model enables the reconstruction of lines from lowpass measurements, even in presence of a large amount of noise or blur. Furthermore, a Prony method performed on rows and columns of the restored image, provides a spectral estimation of the line parameters, with subpixel accuracy.

[1]  Hemant Tyagi,et al.  Sparse non-negative super-resolution - simplified and stabilised , 2018, Applied and Computational Harmonic Analysis.

[2]  Laurent Condat Atomic norm minimization for decomposition into complex exponentials and optimal transport in Fourier domain , 2020, J. Approx. Theory.

[3]  Wen-shin Lee,et al.  VEXPA: Validated EXPonential Analysis through regular sub-sampling , 2017, Signal Process..

[4]  W. Hager,et al.  and s , 2019, Shallow Water Hydraulics.

[5]  Stanley Osher,et al.  Geometric mode decomposition , 2018 .

[6]  Gongguo Tang,et al.  Stable Super-Resolution of Images , 2018, ArXiv.

[7]  Andrew Thompson,et al.  A Bridge Between Past and Present: Exchange and Conditional Gradient Methods are Equivalent , 2018 .

[8]  Annie A. M. Cuyt,et al.  Multivariate exponential analysis from the minimal number of samples , 2018, Adv. Comput. Math..

[9]  곽순섭,et al.  Generalized Functions , 2006, Theoretical and Mathematical Physics.

[10]  Kevin Polisano Modélisation de textures anisotropes par la transformée en ondelettes monogènes et super-résolution de lignes 2-D. (Anisotropic texture modeling by the monogenic wavelet transform and 2-D lines super-resolution) , 2017 .

[11]  Laurent Condat,et al.  Discrete Total Variation: New Definition and Minimization , 2017, SIAM J. Imaging Sci..

[12]  Vincent Duval,et al.  Sampling the Fourier Transform Along Radial Lines , 2016, SIAM J. Numer. Anal..

[13]  Martin Burger,et al.  Bias Reduction in Variational Regularization , 2016, Journal of Mathematical Imaging and Vision.

[14]  Nicolas Papadakis,et al.  CLEAR: Covariant LEAst-Square Refitting with Applications to Image Restoration , 2016, SIAM J. Imaging Sci..

[15]  Dmitry Batenkov,et al.  Accurate solution of near-colliding Prony systems via decimation and homotopy continuation , 2014, Theor. Comput. Sci..

[16]  Ross Marchant,et al.  A Sinusoidal Image Model Derived from the Circular Harmonic Vector , 2017, Journal of Mathematical Imaging and Vision.

[17]  Laurent Condat,et al.  Convex super-resolution detection of lines in images , 2016, 2016 24th European Signal Processing Conference (EUSIPCO).

[18]  Martin Vetterli,et al.  Sampling and Reconstruction of Shapes With Algebraic Boundaries , 2016, IEEE Transactions on Signal Processing.

[19]  Mathews Jacob,et al.  Off-the-Grid Recovery of Piecewise Constant Images from Few Fourier Samples , 2015, SIAM J. Imaging Sci..

[20]  Benjamin Recht,et al.  The alternating descent conditional gradient method for sparse inverse problems , 2015, 2015 IEEE 6th International Workshop on Computational Advances in Multi-Sensor Adaptive Processing (CAMSAP).

[21]  Armin Iske,et al.  Parameter estimation for bivariate exponential sums , 2015, 2015 International Conference on Sampling Theory and Applications (SampTA).

[22]  Nicolas Papadakis,et al.  On Debiasing Restoration Algorithms: Applications to Total-Variation and Nonlocal-Means , 2015, SSVM.

[23]  Bidyut Baran Chaudhuri,et al.  A survey of Hough Transform , 2015, Pattern Recognit..

[24]  Laurent Condat,et al.  Cadzow Denoising Upgraded: A New Projection Method for the Recovery of Dirac Pulses from Noisy Linear Measurements , 2015 .

[25]  Laurent Condat,et al.  Semi-local total variation for regularization of inverse problems , 2014, 2014 22nd European Signal Processing Conference (EUSIPCO).

[26]  Souleymen Sahnoun,et al.  A 2-D spectral analysis method to estimate the modulation parameters in structured illumination microscopy , 2014, 2014 IEEE 11th International Symposium on Biomedical Imaging (ISBI).

[27]  D. Ziou,et al.  Robustness of Radon transform to white additive noise: general case study , 2014 .

[28]  Nelly Pustelnik,et al.  A Nonlocal Structure Tensor-Based Approach for Multicomponent Image Recovery Problems , 2014, IEEE Transactions on Image Processing.

[29]  Stephen P. Boyd,et al.  Proximal Algorithms , 2013, Found. Trends Optim..

[30]  Thierry Blu,et al.  Sampling Curves With Finite Rate of Innovation , 2014, IEEE Transactions on Signal Processing.

[31]  Ross Marchant,et al.  Using Super-Resolution Methods to Solve a Novel Multi-Sinusoidal Signal Model , 2013, 2013 International Conference on Digital Image Computing: Techniques and Applications (DICTA).

[32]  Laurent Condat,et al.  A Primal–Dual Splitting Method for Convex Optimization Involving Lipschitzian, Proximable and Linear Composite Terms , 2012, Journal of Optimization Theory and Applications.

[33]  G. Plonka,et al.  How many Fourier samples are needed for real function reconstruction? , 2013 .

[34]  G. Aubert,et al.  Analysis of a New Variational Model to Restore Point-Like and Curve-Like Singularities in Imaging , 2013 .

[35]  Michael Unser,et al.  Hessian Schatten-Norm Regularization for Linear Inverse Problems , 2012, IEEE Transactions on Image Processing.

[36]  Parikshit Shah,et al.  Compressed Sensing Off the Grid , 2012, IEEE Transactions on Information Theory.

[37]  Gongguo Tang,et al.  Atomic Norm Denoising With Applications to Line Spectral Estimation , 2012, IEEE Transactions on Signal Processing.

[38]  Badri Narayan Bhaskar,et al.  Compressed Sensing o the Grid , 2013 .

[39]  Ivan Markovsky,et al.  Low Rank Approximation - Algorithms, Implementation, Applications , 2018, Communications and Control Engineering.

[40]  Thomas Strohmer,et al.  Measure What Should be Measured: Progress and Challenges in Compressive Sensing , 2012, ArXiv.

[41]  Alex ChiChung Kot,et al.  2D Finite Rate of Innovation Reconstruction Method for Step Edge and Polygon Signals in the Presence of Noise , 2012, IEEE Transactions on Signal Processing.

[42]  Emmanuel J. Candès,et al.  Towards a Mathematical Theory of Super‐resolution , 2012, ArXiv.

[43]  Pablo A. Parrilo,et al.  The Convex Geometry of Linear Inverse Problems , 2010, Foundations of Computational Mathematics.

[44]  Babak Hossein Khalaj,et al.  A unified approach to sparse signal processing , 2009, EURASIP Journal on Advances in Signal Processing.

[45]  Yonina C. Eldar,et al.  Sampling at the rate of innovation: theory and applications , 2012, Compressed Sensing.

[46]  Heinz H. Bauschke,et al.  Convex Analysis and Monotone Operator Theory in Hilbert Spaces , 2011, CMS Books in Mathematics.

[47]  Patrick L. Combettes,et al.  Proximal Splitting Methods in Signal Processing , 2009, Fixed-Point Algorithms for Inverse Problems in Science and Engineering.

[48]  Antonin Chambolle,et al.  A First-Order Primal-Dual Algorithm for Convex Problems with Applications to Imaging , 2011, Journal of Mathematical Imaging and Vision.

[49]  Michael Elad,et al.  Sparse and Redundant Representations - From Theory to Applications in Signal and Image Processing , 2010 .

[50]  Karl Kunisch,et al.  Total Generalized Variation , 2010, SIAM J. Imaging Sci..

[51]  Daniel Potts,et al.  Parameter estimation for exponential sums by approximate Prony method , 2010, Signal Process..

[52]  Massimo Fornasier,et al.  Theoretical Foundations and Numerical Methods for Sparse Recovery , 2010, Radon Series on Computational and Applied Mathematics.

[53]  Pablo A. Parrilo,et al.  Guaranteed Minimum-Rank Solutions of Linear Matrix Equations via Nuclear Norm Minimization , 2007, SIAM Rev..

[54]  A. Chambolle,et al.  An introduction to Total Variation for Image Analysis , 2009 .

[55]  Thierry Blu The Generalized Annihilation Property , 2009 .

[56]  Laurent D. Cohen,et al.  Non-local Regularization of Inverse Problems , 2008, ECCV.

[57]  Weiyu Xu,et al.  Necessary and sufficient conditions for success of the nuclear norm heuristic for rank minimization , 2008, 2008 47th IEEE Conference on Decision and Control.

[58]  M. Vetterli,et al.  Sparse Sampling of Signal Innovations , 2008, IEEE Signal Processing Magazine.

[59]  Pier Luigi Dragotti,et al.  Sampling Schemes for Multidimensional Signals With Finite Rate of Innovation , 2007, IEEE Transactions on Signal Processing.

[60]  Thierry Blu,et al.  Extrapolation and Interpolation) , 2022 .

[61]  Mrityunjay Kumar,et al.  Sparse Image and Signal Processing: Wavelets, Curvelets, Morphological Diversity, by Jean-Luc Starck, Fionn Murtagh, and Jalal M. Fadili , 2007 .

[62]  Levent Onural,et al.  Impulse functions over curves and surfaces and their applications to diffraction , 2006 .

[63]  Stephen P. Boyd,et al.  Convex Optimization , 2004, Algorithms and Theory of Computation Handbook.

[64]  David L Donoho,et al.  Compressed sensing , 2006, IEEE Transactions on Information Theory.

[65]  Martin Vetterli,et al.  Sampling and reconstruction of signals with finite rate of innovation in the presence of noise , 2005, IEEE Transactions on Signal Processing.

[66]  K. C. Ho,et al.  Linear prediction approach for efficient frequency estimation of multiple real sinusoids: algorithms and analyses , 2005, IEEE Transactions on Signal Processing.

[67]  Xiaodong Tao,et al.  Errors, Artifacts, and Improvements in EBSD Processing and Mapping , 2005, Microscopy and Microanalysis.

[68]  Adrian M. K. Thomas,et al.  Classic Papers in Modern Diagnostic Radiology , 2005 .

[69]  Petre Stoica,et al.  Spectral Analysis of Signals , 2009 .

[70]  David W Chambers,et al.  Errors , 1871, The Journal of the American College of Dentists.

[71]  R. Brockett,et al.  On the radon transform of sampled functions , 2003 .

[72]  Barry G. Quinn,et al.  The Estimation and Tracking of Frequency , 2001 .

[73]  M. Unser Sampling-50 years after Shannon , 2000, Proceedings of the IEEE.

[74]  Malcolm D. Macleod,et al.  Fast nearly ML estimation of the parameters of real or complex single tones or resolved multiple tones , 1998, IEEE Trans. Signal Process..

[75]  Stephen P. Boyd,et al.  Semidefinite Programming , 1996, SIAM Rev..

[76]  Knut Conradsen,et al.  Automated Determination of Crystal Orientations from Electron Backscattering Patterns , 1994 .

[77]  Petre Stoica List of references on spectral line analysis , 1993, Signal Process..

[78]  E. R. Davies Simple two-stage method for the accurate location of Hough transform peaks , 1992 .

[79]  Tapan K. Sarkar,et al.  Matrix pencil method for estimating parameters of exponentially damped/undamped sinusoids in noise , 1990, IEEE Trans. Acoust. Speech Signal Process..

[80]  Petre Stoica,et al.  Maximum likelihood estimation of the parameters of multiple sinusoids from noisy measurements , 1989, IEEE Trans. Acoust. Speech Signal Process..

[81]  Josef Kittler,et al.  A survey of the hough transform , 1988, Comput. Vis. Graph. Image Process..

[82]  Kai-Bor Yu,et al.  Total least squares approach for frequency estimation using linear prediction , 1987, IEEE Trans. Acoust. Speech Signal Process..

[83]  James F. Boyce,et al.  The Radon transform and its application to shape parametrization in machine vision , 1987, Image Vis. Comput..

[84]  Thomas Kailath,et al.  ESPRIT-A subspace rotation approach to estimation of parameters of cisoids in noise , 1986, IEEE Trans. Acoust. Speech Signal Process..

[85]  Yoram Bresler,et al.  Exact maximum likelihood parameter estimation of superimposed exponential signals in noise , 1986, IEEE Trans. Acoust. Speech Signal Process..

[86]  L. M. Murphy,et al.  Linear feature detection and enhancement in noisy images via the Radon transform , 1986, Pattern Recognit. Lett..

[87]  Arthur Jay Barabell,et al.  Improving the resolution performance of eigenstructure-based direction-finding algorithms , 1983, ICASSP.

[88]  D.H. Johnson,et al.  The application of spectral estimation methods to bearing estimation problems , 1982, Proceedings of the IEEE.

[89]  R. Kumaresan,et al.  Estimation of frequencies of multiple sinusoids: Making linear prediction perform like maximum likelihood , 1982, Proceedings of the IEEE.

[90]  Y. Chan,et al.  A parameter estimation approach to estimation of frequencies of sinusoids , 1981 .

[91]  Stanley R. Deans,et al.  Hough Transform from the Radon Transform , 1981, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[92]  R. O. Schmidt,et al.  Multiple emitter location and signal Parameter estimation , 1986 .

[93]  A. Rényi,et al.  On projections of probability distributions , 1952 .

[94]  C. Carathéodory,et al.  Über den zusammenhang der extremen von harmonischen funktionen mit ihren koeffizienten und über den picard-landau’schen satz , 1911 .

[95]  C. Carathéodory Über den variabilitätsbereich der fourier’schen konstanten von positiven harmonischen funktionen , 1911 .

[96]  Otto Toeplitz,et al.  Zur Theorie der quadratischen und bilinearen Formen von unendlichvielen Veränderlichen , 1911 .