Incremental Clustering Based on Swarm Intelligence

We propose methods for incrementally constructing a knowledge model for a dynamically changing database, using a swarm of special agents (ie an ant colony) and imitating their natural cluster-forming behavior. We use information-theoretic metrics to overcome some inherent problems of ant-based clustering, obtaining faster and more accurate results. Entropy governs the pick-up and drop behaviors, while movement is guided by pheromones. The primary benefits are fast clustering, and a reduced parameter set. We compared the method both with static clustering (repeatedly applied), and with the previous dynamic approaches of other authors. It generated clusters of similar quality to the static method, at significantly reduced computational cost, so that it can be used in dynamic situations where the static method is infeasible. It gave better results than previous dynamic approaches, with a much-reduced tuning parameter set. It is simple to use, and applicable to continuously- and batch-updated databases.