Dark current induced in large CCD arrays by proton-induced elastic reactions and single to multiple-event spallation reactions

Computer simulations of the non-ionizing energy loss deposited in sensitive volumes as a result of proton-induced spallation reactions agree with analytic models for large sensitive volumes exposed to high fluence. They predict unique features for small volumes and low-fluence exposures which are observed in exposures of large arrays of CCD pixels. Calculations of the number of spallation reactions per pixel correlate with the recently reported relative frequency of switching dark-current states. >