Convergence Rate for a Gauss Collocation Method Applied to Unconstrained Optimal Control

A local convergence rate is established for an orthogonal collocation method based on Gauss quadrature applied to an unconstrained optimal control problem. If the continuous problem has a smooth solution and the Hamiltonian satisfies a strong convexity condition, then the discrete problem possesses a local minimizer in a neighborhood of the continuous solution, and as the number of collocation points increases, the discrete solution converges to the continuous solution at the collocation points, exponentially fast in the sup-norm. Numerical examples illustrating the convergence theory are provided.

[1]  J. Elschner,et al.  The $h$-$p$-Version of Spline Approximation Methods for Mellin Convolution Equations , 1993 .

[2]  P. Williams Jacobi pseudospectral method for solving optimal control problems , 2004 .

[3]  Péter Vértesi On lagrange interpolation , 1981 .

[4]  Gamal N. Elnagar,et al.  The pseudospectral Legendre method for discretizing optimal control problems , 1995, IEEE Trans. Autom. Control..

[5]  Anil V. Rao,et al.  Direct Trajectory Optimization and Costate Estimation via an Orthogonal Collocation Method , 2006 .

[6]  Charles R. Johnson,et al.  Matrix analysis , 1985, Statistical Inference for Engineers and Data Scientists.

[7]  William W. Hager,et al.  A unified framework for the numerical solution of optimal control problems using pseudospectral methods , 2010, Autom..

[8]  T. A. Zang,et al.  Spectral Methods: Fundamentals in Single Domains , 2010 .

[9]  Stephen J. Wright,et al.  Numerical Optimization , 2018, Fundamental Statistical Inference.

[10]  W. Hager,et al.  Dual Approximations in Optimal Control , 1984 .

[11]  Qi Gong,et al.  Connections between the covector mapping theorem and convergence of pseudospectral methods for optimal control , 2008, Comput. Optim. Appl..

[12]  William W. Hager,et al.  The Euler approximation in state constrained optimal control , 2001, Math. Comput..

[13]  Ivo Babuška,et al.  The h-p version of the finite element method , 1986 .

[14]  W. Hager,et al.  Lipschitzian stability in nonlinear control and optimization , 1993 .

[15]  I. Michael Ross,et al.  Pseudospectral Methods for Infinite-Horizon Nonlinear Optimal Control Problems , 2005 .

[16]  Anil V. Rao,et al.  Direct Trajectory Optimization Using a Variable Low-Order Adaptive Pseudospectral Method , 2011 .

[17]  W. Hager,et al.  An hp‐adaptive pseudospectral method for solving optimal control problems , 2011 .

[18]  I. Michael Ross,et al.  Direct Trajectory Optimization by a Chebyshev Pseudospectral Method ; Journal of Guidance, Control, and Dynamics, v. 25, 2002 ; pp. 160-166 , 2002 .

[19]  K. Malanowski,et al.  Error bounds for euler approximation of a state and control constrained optimal control problem , 2000 .

[20]  W. Hager,et al.  LEBESGUE CONSTANTS ARISING IN A CLASS OF COLLOCATION METHODS , 2015, 1507.08316.

[21]  I. Michael Ross,et al.  Costate Estimation by a Legendre Pseudospectral Method , 1998 .

[22]  I. Babuska,et al.  The h , p and h-p versions of the finite element method in 1 dimension. Part II. The error analysis of the h and h-p versions , 1986 .

[23]  W. Hager Multiplier methods for nonlinear optimal control , 1990 .

[24]  G. Reddien Collocation at Gauss Points as a Discretization in Optimal Control , 1979 .

[25]  Gamal N. Elnagar,et al.  Pseudospectral Chebyshev Optimal Control of Constrained Nonlinear Dynamical Systems , 1998, Comput. Optim. Appl..

[26]  Rene F. Swarttouw,et al.  Orthogonal polynomials , 2020, NIST Handbook of Mathematical Functions.

[27]  W. Hager,et al.  Optimality, stability, and convergence in nonlinear control , 1995 .

[28]  W. Hager,et al.  A new approach to Lipschitz continuity in state constrained optimal control 1 1 This research was su , 1998 .

[29]  I. Michael Ross,et al.  Direct trajectory optimization by a Chebyshev pseudospectral method , 2000, Proceedings of the 2000 American Control Conference. ACC (IEEE Cat. No.00CH36334).

[30]  W. Kang Rate of convergence for the Legendre pseudospectral optimal control of feedback linearizable systems , 2010 .

[31]  Wei Kang,et al.  The rate of convergence for a pseudospectral optimal control method , 2008, 2008 47th IEEE Conference on Decision and Control.

[32]  Lorenz T. Biegler,et al.  Convergence rates for direct transcription of optimal control problems using collocation at Radau points , 2008, Comput. Optim. Appl..

[33]  Anil V. Rao,et al.  A ph mesh refinement method for optimal control , 2015 .

[34]  William W. Hager,et al.  Runge-Kutta methods in optimal control and the transformed adjoint system , 2000, Numerische Mathematik.

[35]  Ivo Babuska,et al.  The p and h-p Versions of the Finite Element Method, Basic Principles and Properties , 1994, SIAM Rev..

[36]  J. Frédéric Bonnans,et al.  Computation of order conditions for symplectic partitioned Runge-Kutta schemes with application to optimal control , 2006, Numerische Mathematik.

[37]  Yvon Maday,et al.  Polynomial interpolation results in Sobolev spaces , 1992 .

[38]  Anil V. Rao,et al.  GPOPS-II , 2014, ACM Trans. Math. Softw..

[39]  W. Hager Numerical Analysis in Optimal Control , 2001 .

[40]  William W. Hager,et al.  Second-Order Runge-Kutta Approximations in Control Constrained Optimal Control , 2000, SIAM J. Numer. Anal..

[41]  William W. Hager,et al.  Direct trajectory optimization and costate estimation of finite-horizon and infinite-horizon optimal control problems using a Radau pseudospectral method , 2011, Comput. Optim. Appl..

[42]  William W. Hager,et al.  Adaptive mesh refinement method for optimal control using nonsmoothness detection and mesh size reduction , 2015, J. Frankl. Inst..

[43]  William W. Hager,et al.  Convergence Rate for a Gauss Collocation Method Applied to Unconstrained Optimal Control , 2016, Journal of Optimization Theory and Applications.