Convergence Rate for a Gauss Collocation Method Applied to Unconstrained Optimal Control
暂无分享,去创建一个
[1] J. Elschner,et al. The $h$-$p$-Version of Spline Approximation Methods for Mellin Convolution Equations , 1993 .
[2] P. Williams. Jacobi pseudospectral method for solving optimal control problems , 2004 .
[3] Péter Vértesi. On lagrange interpolation , 1981 .
[4] Gamal N. Elnagar,et al. The pseudospectral Legendre method for discretizing optimal control problems , 1995, IEEE Trans. Autom. Control..
[5] Anil V. Rao,et al. Direct Trajectory Optimization and Costate Estimation via an Orthogonal Collocation Method , 2006 .
[6] Charles R. Johnson,et al. Matrix analysis , 1985, Statistical Inference for Engineers and Data Scientists.
[7] William W. Hager,et al. A unified framework for the numerical solution of optimal control problems using pseudospectral methods , 2010, Autom..
[8] T. A. Zang,et al. Spectral Methods: Fundamentals in Single Domains , 2010 .
[9] Stephen J. Wright,et al. Numerical Optimization , 2018, Fundamental Statistical Inference.
[10] W. Hager,et al. Dual Approximations in Optimal Control , 1984 .
[11] Qi Gong,et al. Connections between the covector mapping theorem and convergence of pseudospectral methods for optimal control , 2008, Comput. Optim. Appl..
[12] William W. Hager,et al. The Euler approximation in state constrained optimal control , 2001, Math. Comput..
[13] Ivo Babuška,et al. The h-p version of the finite element method , 1986 .
[14] W. Hager,et al. Lipschitzian stability in nonlinear control and optimization , 1993 .
[15] I. Michael Ross,et al. Pseudospectral Methods for Infinite-Horizon Nonlinear Optimal Control Problems , 2005 .
[16] Anil V. Rao,et al. Direct Trajectory Optimization Using a Variable Low-Order Adaptive Pseudospectral Method , 2011 .
[17] W. Hager,et al. An hp‐adaptive pseudospectral method for solving optimal control problems , 2011 .
[18] I. Michael Ross,et al. Direct Trajectory Optimization by a Chebyshev Pseudospectral Method ; Journal of Guidance, Control, and Dynamics, v. 25, 2002 ; pp. 160-166 , 2002 .
[19] K. Malanowski,et al. Error bounds for euler approximation of a state and control constrained optimal control problem , 2000 .
[20] W. Hager,et al. LEBESGUE CONSTANTS ARISING IN A CLASS OF COLLOCATION METHODS , 2015, 1507.08316.
[21] I. Michael Ross,et al. Costate Estimation by a Legendre Pseudospectral Method , 1998 .
[22] I. Babuska,et al. The h , p and h-p versions of the finite element method in 1 dimension. Part II. The error analysis of the h and h-p versions , 1986 .
[23] W. Hager. Multiplier methods for nonlinear optimal control , 1990 .
[24] G. Reddien. Collocation at Gauss Points as a Discretization in Optimal Control , 1979 .
[25] Gamal N. Elnagar,et al. Pseudospectral Chebyshev Optimal Control of Constrained Nonlinear Dynamical Systems , 1998, Comput. Optim. Appl..
[26] Rene F. Swarttouw,et al. Orthogonal polynomials , 2020, NIST Handbook of Mathematical Functions.
[27] W. Hager,et al. Optimality, stability, and convergence in nonlinear control , 1995 .
[28] W. Hager,et al. A new approach to Lipschitz continuity in state constrained optimal control 1 1 This research was su , 1998 .
[29] I. Michael Ross,et al. Direct trajectory optimization by a Chebyshev pseudospectral method , 2000, Proceedings of the 2000 American Control Conference. ACC (IEEE Cat. No.00CH36334).
[30] W. Kang. Rate of convergence for the Legendre pseudospectral optimal control of feedback linearizable systems , 2010 .
[31] Wei Kang,et al. The rate of convergence for a pseudospectral optimal control method , 2008, 2008 47th IEEE Conference on Decision and Control.
[32] Lorenz T. Biegler,et al. Convergence rates for direct transcription of optimal control problems using collocation at Radau points , 2008, Comput. Optim. Appl..
[33] Anil V. Rao,et al. A ph mesh refinement method for optimal control , 2015 .
[34] William W. Hager,et al. Runge-Kutta methods in optimal control and the transformed adjoint system , 2000, Numerische Mathematik.
[35] Ivo Babuska,et al. The p and h-p Versions of the Finite Element Method, Basic Principles and Properties , 1994, SIAM Rev..
[36] J. Frédéric Bonnans,et al. Computation of order conditions for symplectic partitioned Runge-Kutta schemes with application to optimal control , 2006, Numerische Mathematik.
[37] Yvon Maday,et al. Polynomial interpolation results in Sobolev spaces , 1992 .
[38] Anil V. Rao,et al. GPOPS-II , 2014, ACM Trans. Math. Softw..
[39] W. Hager. Numerical Analysis in Optimal Control , 2001 .
[40] William W. Hager,et al. Second-Order Runge-Kutta Approximations in Control Constrained Optimal Control , 2000, SIAM J. Numer. Anal..
[41] William W. Hager,et al. Direct trajectory optimization and costate estimation of finite-horizon and infinite-horizon optimal control problems using a Radau pseudospectral method , 2011, Comput. Optim. Appl..
[42] William W. Hager,et al. Adaptive mesh refinement method for optimal control using nonsmoothness detection and mesh size reduction , 2015, J. Frankl. Inst..
[43] William W. Hager,et al. Convergence Rate for a Gauss Collocation Method Applied to Unconstrained Optimal Control , 2016, Journal of Optimization Theory and Applications.