Heat Transfer and Pressure Drop of CO2 Flow Boiling in Microchannels

An experimental investigation was performed to study the flow boiling heat transfer of CO2 in microchannels. Tests were conducted in a horizontal triangular microchannel with the hydraulic diameter of 0.86 mm. Heat to the test section was provided by direct electrical heating. Experiments were conducted with CO2 at saturation temperatures of 273 to 293 K, mass fluxes of 100 to 820 kg/m2s, heat fluxes of 3 to 23 kW/m2, and qualities of 20% to 85%. It was demonstrated that heat flux had an enhancing effect on the heat transfer coefficient, while mass flux had a negligible effect. Nucleate boiling mechanism is found to be the dominant factor for CO2 flow boiling in microchannels. Heat transfer coefficient degraded quickly at high vapor quality region (0.6–0.7), which is possibly due to flow mal-distribution. Pressure drop increases slightly with vapor quality and/or heat flux. Mass flux has a strong increasing effect on pressure drop.