Optimization-Based Dynamic Human Gait Prediction

Abstract : In this study, an optimization-based approach for simulating the walking motion of a digital human model is presented. A spatial skeletal model having 55 degrees of freedom is used to demonstrate the approach. Design variables are the joint angle profiles. Walking motion is generated by minimizing the mechanical energy subjected to basic physical and kinematical constraints. A formulation for symmetric and periodic normal walking is developed and results are presented. Backpack and ground reaction forces are taken into account in the current formulation, and the effects of the backpack on normal walking are discussed.

[1]  Qiong Wu,et al.  Synthesis of a complete sagittal gait cycle for a five-link biped robot , 2003, Robotica.

[2]  Frank Chongwoo Park,et al.  Newton-type algorithms for robot motion optimization , 1999, Proceedings 1999 IEEE/RSJ International Conference on Intelligent Robots and Systems. Human and Environment Friendly Robots with High Intelligence and Emotional Quotients (Cat. No.99CH36289).

[3]  Yujiang Xiang,et al.  Optimization-based motion prediction of mechanical systems: sensitivity analysis , 2009 .

[4]  Frank Chongwoo Park,et al.  A Lie Group Formulation of Robot Dynamics , 1995, Int. J. Robotics Res..

[5]  J. Arora,et al.  Alternative Formulations for Optimization-Based Human Gait Planning , 2007 .

[6]  D. Bae,et al.  Recursive formulas for design sensitivity analysis of mechanical systems , 2001 .

[7]  Guy Bessonnet,et al.  Generating globally optimised sagittal gait cycles of a biped robot , 2003, Robotica.

[8]  J. Saunders,et al.  The major determinants in normal and pathological gait. , 1953, The Journal of bone and joint surgery. American volume.

[9]  J. Y. S. Luh,et al.  On-Line Computational Scheme for Mechanical Manipulators , 1980 .

[10]  Jasbir S. Arora,et al.  An Optimization-Based Methodology to Predict Digital Human Gait Motion , 2005 .

[11]  Sung Yong Shin,et al.  Planning biped locomotion using motion capture data and probabilistic roadmaps , 2003, TOGS.

[12]  Yoshihiko Nakamura,et al.  Making feasible walking motion of humanoid robots from human motion capture data , 1999, Proceedings 1999 IEEE International Conference on Robotics and Automation (Cat. No.99CH36288C).

[13]  David E. Orin,et al.  Kinematic and kinetic analysis of open-chain linkages utilizing Newton-Euler methods , 1979 .

[14]  N. Matsunaga,et al.  Kinematic analysis of human lifting movement for biped robot control , 2004, The 8th IEEE International Workshop on Advanced Motion Control, 2004. AMC '04..

[15]  Kazuhito Yokoi,et al.  Planning walking patterns for a biped robot , 2001, IEEE Trans. Robotics Autom..

[16]  M. Pandy,et al.  Dynamic optimization of human walking. , 2001, Journal of biomechanical engineering.

[17]  Miomir Vukobratovic,et al.  Zero-Moment Point - Thirty Five Years of its Life , 2004, Int. J. Humanoid Robotics.

[18]  Jan A. Snyman,et al.  A mathematical optimization methodology for the optimal design of a planar robotic manipulator , 1999 .

[19]  Guy Bessonnet,et al.  Optimal trajectories of robot arms minimizing constrained actuators and travelling time , 1990, Proceedings., IEEE International Conference on Robotics and Automation.

[20]  Just L. Herder,et al.  Design of a Statically Balanced Tensegrity Mechanism , 2006 .

[21]  Pradip N. Sheth,et al.  Multibody Dynamics Integrated With Muscle Models and Space-Time Constraints for Optimization of Lifting Movements , 2005 .

[22]  Jean-Paul Laumond,et al.  A motion capture‐based control‐space approach for walking mannequins , 2006, Comput. Animat. Virtual Worlds.

[23]  Joo Hyun Kim,et al.  A robust formulation for prediction of human running , 2007 .

[24]  J. M. Jiménez,et al.  Recursive and Residual Algorithms for the Efficient Numerical Integration of Multi-Body Systems , 2004 .

[25]  Kazuhito Yokoi,et al.  Dynamic Lifting Motion of Humanoid Robots , 2007, Proceedings 2007 IEEE International Conference on Robotics and Automation.

[26]  Yannick Aoustin,et al.  Optimal reference trajectories for walking and running of a biped robot , 2001, Robotica.

[27]  D B Chaffin,et al.  Back lift versus leg lift: an index and visualization of dynamic lifting strategies. , 2000, Journal of biomechanics.

[28]  Dimitris N. Metaxas,et al.  Human Motion Planning Based on Recursive Dynamics and Optimal Control Techniques , 2002 .

[29]  Werner Schiehlen,et al.  Multibody System Dynamics: Roots and Perspectives , 1997 .

[30]  Jasbir S. Arora,et al.  Survey of multi-objective optimization methods for engineering , 2004 .

[31]  Guy Bessonnet,et al.  Forces acting on a biped robot. Center of pressure-zero moment point , 2004, IEEE Transactions on Systems, Man, and Cybernetics - Part A: Systems and Humans.

[32]  E. Haug,et al.  Kinematic and Kinetic Derivatives in Multibody System Analysis , 1998 .

[33]  Jong H. Park,et al.  Biped robot walking using gravity-compensated inverted pendulum mode and computed torque control , 1998, Proceedings. 1998 IEEE International Conference on Robotics and Automation (Cat. No.98CH36146).

[34]  J. Arora,et al.  Design sensitivity analysis and optimization of dynamic response , 1984 .

[35]  Peter Eberhard,et al.  Computational Dynamics of Multibody Systems: History, Formalisms, and Applications , 2006 .

[36]  B. Stansfield,et al.  Regression analysis of gait parameters with speed in normal children walking at self-selected speeds. , 2006, Gait & posture.

[37]  J. Denavit,et al.  A kinematic notation for lower pair mechanisms based on matrices , 1955 .

[38]  T. Furukawa Time-Subminimal Trajectory Planning for Discrete Non-linear Systems , 2002 .

[39]  E. Haug,et al.  A Recursive Formulation for Constrained Mechanical System Dynamics: Part II. Closed Loop Systems , 1987 .

[40]  E. Ayyappa Normal Human Locomotion, Part 1: Basic Concepts and Terminology , 1997 .

[41]  C. S. G. Lee,et al.  Robotics: Control, Sensing, Vision, and Intelligence , 1987 .

[42]  C. J. Goh,et al.  Time-optimal Trajectories for Robot Manipulators , 1991, Robotica.

[43]  U. Rein,et al.  Efficient Object-Oriented Programming of Multibody Dynamics Formalisms , 1995 .

[44]  Kazuhito Yokoi,et al.  Biped walking pattern generation by using preview control of zero-moment point , 2003, 2003 IEEE International Conference on Robotics and Automation (Cat. No.03CH37422).

[45]  John M. Hollerbach,et al.  A Recursive Lagrangian Formulation of Maniputator Dynamics and a Comparative Study of Dynamics Formulation Complexity , 1980, IEEE Transactions on Systems, Man, and Cybernetics.

[46]  G. Sohl,et al.  A Recursive Multibody Dynamics and Sensitivity Algorithm for Branched Kinematic Chains , 2001 .

[47]  R. W. Toogood,et al.  Efficient robot inverse and direct dynamics algorithms using microcomputer based symbolic generation , 1989, Proceedings, 1989 International Conference on Robotics and Automation.

[48]  Michael A. Saunders,et al.  SNOPT: An SQP Algorithm for Large-Scale Constrained Optimization , 2002, SIAM J. Optim..

[49]  Roy Featherstone,et al.  Robot Dynamics Algorithms , 1987 .

[50]  Atsuo Takanishi,et al.  Development of a bipedal humanoid robot-control method of whole body cooperative dynamic biped walking , 1999, Proceedings 1999 IEEE International Conference on Robotics and Automation (Cat. No.99CH36288C).

[51]  Peter Eberhard,et al.  Automatic differentiation of numerical integration algorithms , 1999, Math. Comput..

[52]  Scott L Delp,et al.  Generating dynamic simulations of movement using computed muscle control. , 2003, Journal of biomechanics.

[53]  K. Anderson,et al.  Analytical Fully-Recursive Sensitivity Analysis for Multibody Dynamic Chain Systems , 2002 .