Channel Coding of a Quantum Measurement

In this work, we consider the preservation of a measurement for quantum systems interacting with an environment. Namely, a method of preserving an optimal measurement over a channel is devised, what we call channel coding of a quantum measurement in that operations are applied before and after a channel in order to protect a measurement. A protocol that preserves a quantum measurement over an arbitrary channel is shown only with local operations and classical communication without the use of a larger Hilbert space. Therefore, the protocol is readily feasible with present day’s technologies. Channel coding of qubit measurements is presented, and it is shown that a measurement can be preserved for an arbitrary channel for both i) pairs of qubit states and ii) ensembles of equally probable states. The protocol of preserving a quantum measurement is demonstrated with IBM quantum computers.

[1]  Shor,et al.  Scheme for reducing decoherence in quantum computer memory. , 1995, Physical review. A, Atomic, molecular, and optical physics.

[2]  Richard W. Hamming,et al.  Error detecting and error correcting codes , 1950 .

[3]  Thierry Paul,et al.  Quantum computation and quantum information , 2007, Mathematical Structures in Computer Science.

[4]  Francesco Petruccione,et al.  The Theory of Open Quantum Systems , 2002 .

[5]  Mark M. Wilde,et al.  Quantum Information Theory , 2013 .

[6]  Physical Review , 1965, Nature.

[7]  L. Goddard Information Theory , 1962, Nature.

[9]  S. Barnett,et al.  Quantum state discrimination , 2008, 0810.1970.

[10]  János A. Bergou,et al.  Quantum state discrimination and selected applications , 2007 .

[11]  K. Hunter Measurement does not always aid state discrimination , 2002, quant-ph/0211148.

[12]  J. Bae,et al.  Measurement-Protected Quantum Key Distribution , 2019, 1912.00768.

[13]  Zach DeVito,et al.  Opt , 2017 .

[14]  Joonwoo Bae,et al.  Structure of minimum-error quantum state discrimination , 2012, 1210.2845.

[15]  Daniel A. Lidar,et al.  Decoherence-Free Subspaces for Quantum Computation , 1998, quant-ph/9807004.

[16]  Gerard J. Milburn,et al.  Geometry of quantum states: an introduction to quantum entanglement by Ingemar Bengtsson and Karol Zyczkowski , 2006, Quantum Inf. Comput..

[17]  Robert S. Kennedy,et al.  Optimum testing of multiple hypotheses in quantum detection theory , 1975, IEEE Trans. Inf. Theory.

[18]  HE Ixtroductiont,et al.  The Bell System Technical Journal , 2022 .

[19]  Anthony Chefles Quantum state discrimination , 2000 .

[20]  C. Helstrom Quantum detection and estimation theory , 1969 .

[21]  M. Horodecki,et al.  General teleportation channel, singlet fraction and quasi-distillation , 1998, quant-ph/9807091.

[22]  Joonwoo Bae,et al.  Minimum-error discrimination of qubit states: Methods, solutions, and properties , 2013 .

[23]  Gilles Brassard,et al.  Quantum cryptography: Public key distribution and coin tossing , 2014, Theor. Comput. Sci..

[24]  David Poulin,et al.  Unified and generalized approach to quantum error correction. , 2004, Physical review letters.

[25]  Younghun Kwon,et al.  Complete analysis for three-qubit mixed-state discrimination , 2013, 1310.0966.

[26]  D. Poulin,et al.  Information-preserving structures: A general framework for quantum zero-error information , 2010, 1006.1358.

[27]  Joonwoo Bae,et al.  Quantum state discrimination and its applications , 2015, 1707.02571.

[28]  János A. Bergou,et al.  Discrimination of quantum states , 2004 .

[29]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[30]  Shor,et al.  Good quantum error-correcting codes exist. , 1995, Physical review. A, Atomic, molecular, and optical physics.

[31]  Chahan M. Kropf,et al.  Preserving measurements for optimal state discrimination over quantum channels , 2018, Physical Review A.

[32]  D. Gross,et al.  Evenly distributed unitaries: On the structure of unitary designs , 2006, quant-ph/0611002.

[33]  C. E. SHANNON,et al.  A mathematical theory of communication , 1948, MOCO.

[34]  Robert B. Ash,et al.  Information Theory , 2020, The SAGE International Encyclopedia of Mass Media and Society.

[35]  Viola,et al.  Theory of quantum error correction for general noise , 2000, Physical review letters.

[36]  Christoph Dankert,et al.  Exact and approximate unitary 2-designs and their application to fidelity estimation , 2009 .

[37]  G. D’Ariano,et al.  Transforming quantum operations: Quantum supermaps , 2008, 0804.0180.

[38]  David Poulin,et al.  Characterizing the structure of preserved information in quantum processes. , 2007, Physical review letters.