Channel Coding of a Quantum Measurement
暂无分享,去创建一个
Spiros Kechrimparis | Chahan M. Kropf | Filip Wudarski | Joonwoo Bae | J. Bae | F. Wudarski | Spiros Kechrimparis | C. Kropf
[1] Shor,et al. Scheme for reducing decoherence in quantum computer memory. , 1995, Physical review. A, Atomic, molecular, and optical physics.
[2] Richard W. Hamming,et al. Error detecting and error correcting codes , 1950 .
[3] Thierry Paul,et al. Quantum computation and quantum information , 2007, Mathematical Structures in Computer Science.
[4] Francesco Petruccione,et al. The Theory of Open Quantum Systems , 2002 .
[5] Mark M. Wilde,et al. Quantum Information Theory , 2013 .
[6] Physical Review , 1965, Nature.
[7] L. Goddard. Information Theory , 1962, Nature.
[9] S. Barnett,et al. Quantum state discrimination , 2008, 0810.1970.
[10] János A. Bergou,et al. Quantum state discrimination and selected applications , 2007 .
[11] K. Hunter. Measurement does not always aid state discrimination , 2002, quant-ph/0211148.
[12] J. Bae,et al. Measurement-Protected Quantum Key Distribution , 2019, 1912.00768.
[13] Zach DeVito,et al. Opt , 2017 .
[14] Joonwoo Bae,et al. Structure of minimum-error quantum state discrimination , 2012, 1210.2845.
[15] Daniel A. Lidar,et al. Decoherence-Free Subspaces for Quantum Computation , 1998, quant-ph/9807004.
[16] Gerard J. Milburn,et al. Geometry of quantum states: an introduction to quantum entanglement by Ingemar Bengtsson and Karol Zyczkowski , 2006, Quantum Inf. Comput..
[17] Robert S. Kennedy,et al. Optimum testing of multiple hypotheses in quantum detection theory , 1975, IEEE Trans. Inf. Theory.
[18] HE Ixtroductiont,et al. The Bell System Technical Journal , 2022 .
[19] Anthony Chefles. Quantum state discrimination , 2000 .
[20] C. Helstrom. Quantum detection and estimation theory , 1969 .
[21] M. Horodecki,et al. General teleportation channel, singlet fraction and quasi-distillation , 1998, quant-ph/9807091.
[22] Joonwoo Bae,et al. Minimum-error discrimination of qubit states: Methods, solutions, and properties , 2013 .
[23] Gilles Brassard,et al. Quantum cryptography: Public key distribution and coin tossing , 2014, Theor. Comput. Sci..
[24] David Poulin,et al. Unified and generalized approach to quantum error correction. , 2004, Physical review letters.
[25] Younghun Kwon,et al. Complete analysis for three-qubit mixed-state discrimination , 2013, 1310.0966.
[26] D. Poulin,et al. Information-preserving structures: A general framework for quantum zero-error information , 2010, 1006.1358.
[27] Joonwoo Bae,et al. Quantum state discrimination and its applications , 2015, 1707.02571.
[28] János A. Bergou,et al. Discrimination of quantum states , 2004 .
[29] G. G. Stokes. "J." , 1890, The New Yale Book of Quotations.
[30] Shor,et al. Good quantum error-correcting codes exist. , 1995, Physical review. A, Atomic, molecular, and optical physics.
[31] Chahan M. Kropf,et al. Preserving measurements for optimal state discrimination over quantum channels , 2018, Physical Review A.
[32] D. Gross,et al. Evenly distributed unitaries: On the structure of unitary designs , 2006, quant-ph/0611002.
[33] C. E. SHANNON,et al. A mathematical theory of communication , 1948, MOCO.
[34] Robert B. Ash,et al. Information Theory , 2020, The SAGE International Encyclopedia of Mass Media and Society.
[35] Viola,et al. Theory of quantum error correction for general noise , 2000, Physical review letters.
[36] Christoph Dankert,et al. Exact and approximate unitary 2-designs and their application to fidelity estimation , 2009 .
[37] G. D’Ariano,et al. Transforming quantum operations: Quantum supermaps , 2008, 0804.0180.
[38] David Poulin,et al. Characterizing the structure of preserved information in quantum processes. , 2007, Physical review letters.