Numerical approximation of nematic liquid crystal flows governed by the Ericksen-Leslie equations

Numerical approximation of the flow of liquid crystals governed by the Ericksen-Leslie equations is considered. Care is taken to develop numerical schemes which inherit the Hamiltonian structure of these equations and associated stability properties. For a large class of material parameters compactness of the discrete solutions is established which guarantees convergence.

[1]  David Kinderlehrer,et al.  Mathematical Questions of Liquid Crystal Theory , 1987 .

[2]  G. Galdi An Introduction to the Mathematical Theory of the Navier-Stokes Equations : Volume I: Linearised Steady Problems , 1994 .

[3]  Mitchell Luskin,et al.  Minimum Energy Configurations for Liquid Crystals: Computational Results , 1987 .

[4]  Andreas Prohl,et al.  Finite Element Approximations of the Ericksen-Leslie Model for Nematic Liquid Crystal Flow , 2008, SIAM J. Numer. Anal..

[5]  F. C. Frank,et al.  I. Liquid crystals. On the theory of liquid crystals , 1958 .

[6]  Andreas Prohl,et al.  Finite element approximations of harmonic map heat flows and wave maps into spheres of nonconstant radii , 2010, Numerische Mathematik.

[7]  Epifanio G. Virga,et al.  Variational Theories for Liquid Crystals , 2018 .

[8]  Iain W. Stewart,et al.  The Static and Dynamic Continuum Theory of Liquid Crystals , 2001 .

[9]  Ricardo H. Nochetto,et al.  Maximum-norm stability of the finite element Stokes projection , 2005 .

[10]  F. Lin,et al.  Stability of singularities of minimizing harmonic maps , 1989 .

[11]  Chun Liu,et al.  Existence of Solutions for the Ericksen-Leslie System , 2000 .

[12]  N. Walkington,et al.  Mixed Methods for the Approximation of Liquid Crystal Flows , 2002 .

[13]  F. Lin,et al.  Nonparabolic dissipative systems modeling the flow of liquid crystals , 1995 .

[14]  Xue-Cheng Tai,et al.  A Saddle Point Approach to the Computation of Harmonic Maps , 2009, SIAM J. Numer. Anal..

[15]  F. M. Leslie Some constitutive equations for liquid crystals , 1968 .

[16]  Giuseppe Mingione,et al.  Regularity of minima: An invitation to the dark side of the calculus of variations , 2006 .

[17]  Noel Walkington,et al.  Compactness Properties of the DG and CG Time Stepping Schemes for Parabolic Equations , 2010, SIAM J. Numer. Anal..

[18]  John W. Barrett,et al.  CONVERGENCE OF A FULLY DISCRETE FINITE ELEMENT METHOD FOR A DEGENERATE PARABOLIC SYSTEM MODELLING NEMATIC LIQUID CRYSTALS WITH VARIABLE DEGREE OF ORIENTATION , 2006 .

[19]  Jie Shen,et al.  Corrigendum: Fourier Spectral Approximation to a Dissipative System Modeling the Flow of Liquid Crystals , 2001, SIAM J. Numer. Anal..

[20]  F. M. Leslie Theory of Flow Phenomena in Liquid Crystals , 1979 .

[21]  J. Ericksen Continuum theory of nematic liquid crystals , 1987 .

[22]  J. Ericksen,et al.  Nilpotent energies in liquid crystal theory , 1962 .

[23]  Chun Liu,et al.  Approximation of Liquid Crystal Flows , 2000, SIAM J. Numer. Anal..

[24]  Hui Zhang,et al.  An energy law preserving C0 finite element scheme for simulating the kinematic effects in liquid crystal dynamics , 2007, J. Comput. Phys..

[25]  J. Ericksen Conservation Laws for Liquid Crystals , 1961 .

[26]  Iain W. Stewart The static and dynamic continuum theory of liquid crystals , 2004 .

[27]  David Kinderlehrer,et al.  Existence and partial regularity of static liquid crystal configurations , 1986 .

[28]  Francisco Guillén-González,et al.  Mixed formulation, approximation and decoupling algorithm for a penalized nematic liquid crystals model , 2011, Math. Comput..

[29]  F. Lin Solutions of Ginzburg-Landau equations and critical points of the renormalized energy , 1995 .

[30]  Fanghua Lin,et al.  Some Dynamical Properties of Ginzburg-Landau Vortices , 1996 .

[31]  G. Mingione,et al.  The existence of regular boundary points for non-linear elliptic systems , 2007 .

[32]  Halil Mete Soner,et al.  Dynamics of Ginzburg‐Landau Vortices , 1998 .

[33]  A. Isihara,et al.  Theory of Liquid Crystals , 1972 .