Relativistic intermolecular forces, moderately long range.

The generalized Breit—Pauli Hamiltonian is used to give a systematic treatment of magnetic and other relativistic intermolecular energies through O(α2) (where α is the fine‐structure constant) for intermolecular separations, R, sufficiently large that the charge distributions of the two molecules do not overlap, but sufficiently small that R<λ/0=(αΔe)−1, where Δe is the excitation energy of the first allowed transition of one of the molecules.The theory is discussed in general and many types of interaction energies are obtained which depend on the spin and orbital angular‐momentum states of the molecules. The interaction of two nondegenerate atoms (L=0, S=0) is considered specifically. Of particular interest is an interaction‐energy term which varies as α2/R4.

[1]  R. Mcweeny On the Origin of Spin‐Hamiltonian Parameters , 1965 .

[2]  A. Kingston Van der Waals Forces for the Inert Gases , 1964 .

[3]  E. Clementi Correlation Energy for Atomic Systems , 1963 .

[4]  A. E. Kingston,et al.  The refractive indices and Verdet constants of the inert gases , 1960, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.

[5]  M. E. Rose The Electrostatic Interaction of Two Arbitrary Charge Distributions , 1958 .

[6]  S. Zienau,et al.  On the physical interpretation of the relativistic corrections to the van der waals force found by penfield and zatsbis , 1957 .

[7]  A. R. Edmonds,et al.  Angular Momentum in Quantum Mechanics , 1957 .

[8]  S. Zienau,et al.  On the radiative contributions to the Van der Waals force , 1957 .

[9]  G. Power,et al.  Slow shearing motion over a hollow , 1957 .

[10]  Henry Zatzkis,et al.  Quantization of the relativistic harmonic oscillator by perturbative methods with application to van der Waals forces , 1957 .

[11]  J. Hirschfelder,et al.  Long‐Range Intermolecular Forces , 1956 .

[12]  C. F. Curtiss,et al.  KINETIC THEORY OF NONSPHERICAL MOLECULES. V , 1956 .

[13]  H. Margenau Quadrupole Contributions to London's Dispersion Forces , 1938 .

[14]  G. Breit The Fine Structure of HE as a Test of the Spin Interactions of Two Electrons , 1930 .

[15]  C. Eckart The Application of Group theory to the Quantum Dynamics of Monatomic Systems , 1930 .

[16]  A. Unsöld Quantentheorie des Wasserstoffmolekülions und der Born-Landéschen Abstoßungskräfte , 1927 .

[17]  C. Darwin,et al.  LI. The dynamical motions of charged particles , 1920 .

[18]  Benjamin Bederson,et al.  Advances in atomic and molecular physics , 1965 .

[19]  T. Itoh Derivation of Nonrelativistic Hamiltonian for Electrons from Quantum Electrodynamics , 1965 .

[20]  W. Thorson Quantum-Mechanical Transition-Complex Theory of Rearrangement Collisions , 1962 .

[21]  William F. Meggers,et al.  Quantum Theory of Atomic Structure , 1960 .

[22]  Henry Margenau,et al.  Van der waals forces , 1939 .

[23]  F. London,et al.  The general theory of molecular forces , 1937 .