Deformation and failure of protein materials in physiologically extreme conditions and disease.

[1]  Rainer Breitling,et al.  What is Systems Biology? , 2010, Front. Physiology.

[2]  T. Irving,et al.  On the packing structure of collagen: response to Okuyama et al.'s comment on Microfibrillar structure of type I collagen in situ , 2009 .

[3]  Alberto Redaelli,et al.  Deformation rate controls elasticity and unfolding pathway of single tropocollagen molecules. , 2009, Journal of the mechanical behavior of biomedical materials.

[4]  Alberto Redaelli,et al.  Single molecule effects of osteogenesis imperfecta mutations in tropocollagen protein domains , 2008, Protein science : a publication of the Protein Society.

[5]  Markus J Buehler,et al.  Strength limit of entropic elasticity in beta-sheet protein domains. , 2008, Physical review. E, Statistical, nonlinear, and soft matter physics.

[6]  Markus J. Buehler,et al.  Theoretical and computational hierarchical nanomechanics of protein materials: Deformation and fracture , 2008 .

[7]  Roger D Kamm,et al.  Measuring molecular rupture forces between single actin filaments and actin-binding proteins , 2008, Proceedings of the National Academy of Sciences.

[8]  Markus J. Buehler,et al.  Hierarchical Coexistence of Universality and Diversity Controls Robustness and Multi-Functionality in Protein Materials , 2008 .

[9]  Stavros J Hamodrakas,et al.  Natural protective amyloids. , 2008, Current protein & peptide science.

[10]  S. Rammensee,et al.  Assembly mechanism of recombinant spider silk proteins , 2008, Proceedings of the National Academy of Sciences.

[11]  J. Weisel Enigmas of Blood Clot Elasticity , 2008, Science.

[12]  Klaus Schulten,et al.  Molecular basis of fibrin clot elasticity. , 2008, Structure.

[13]  M. Rief,et al.  Elastic bond network model for protein unfolding mechanics. , 2008, Physical review letters.

[14]  Ueli Aebi,et al.  Towards an integrated understanding of the structure and mechanics of the cell nucleus , 2008, BioEssays : news and reviews in molecular, cellular and developmental biology.

[15]  Michele Vendruscolo,et al.  Role of Intermolecular Forces in Defining Material Properties of Protein Nanofibrils , 2007, Science.

[16]  J. Rao,et al.  Nanomechanical analysis of cells from cancer patients. , 2007, Nature nanotechnology.

[17]  Richard Weinkamer,et al.  Nature’s hierarchical materials , 2007 .

[18]  Markus J. Buehler,et al.  Hierarchies, multiple energy barriers, and robustness govern the fracture mechanics of α-helical and β-sheet protein domains , 2007, Proceedings of the National Academy of Sciences.

[19]  Timothy M. Wright,et al.  Abnormal Mineral-Matrix Interactions Are a Significant Contributor to Fragility in oim/oim Bone , 2007, Calcified Tissue International.

[20]  Markus J Buehler,et al.  Entropic elasticity controls nanomechanics of single tropocollagen molecules. , 2007, Biophysical journal.

[21]  P. Coulombe,et al.  Intermediate filament scaffolds fulfill mechanical, organizational, and signaling functions in the cytoplasm. , 2007, Genes & development.

[22]  Ueli Aebi,et al.  Intermediate filaments: from cell architecture to nanomechanics , 2007, Nature Reviews Molecular Cell Biology.

[23]  K. Schulten,et al.  Single-Molecule Experiments in Vitro and in Silico , 2007, Science.

[24]  A. Palazoglu,et al.  Nanoscale heterogeneity promotes energy dissipation in bone. , 2007, Nature materials.

[25]  E. Seeman,et al.  Insights into material and structural basis of bone fragility from diseases associated with fractures: how determinants of the biomechanical properties of bone are compromised by disease. , 2007, Endocrine reviews.

[26]  David Taylor,et al.  Living with cracks: damage and repair in human bone. , 2007, Nature materials.

[27]  Uri Alon,et al.  Simplicity in biology , 2007, Nature.

[28]  André E. X. Brown,et al.  Forced unfolding of coiled-coils in fibrinogen by single-molecule AFM. , 2007, Biophysical journal.

[29]  R. McKendry,et al.  Morphology and mechanical stability of amyloid-like peptide fibrils , 2007, Journal of materials science. Materials in medicine.

[30]  Laurent Kreplak,et al.  Biomechanical properties of intermediate filaments: from tissues to single filaments and back , 2007, BioEssays : news and reviews in molecular, cellular and developmental biology.

[31]  Wolfgang Wagermaier,et al.  Cooperative deformation of mineral and collagen in bone at the nanoscale , 2006, Proceedings of the National Academy of Sciences.

[32]  Michael Kerschnitzki,et al.  Evidence for an elementary process in bone plasticity with an activation enthalpy of 1 eV , 2006, Journal of The Royal Society Interface.

[33]  Ueli Aebi,et al.  Monitoring intermediate filament assembly by small-angle x-ray scattering reveals the molecular architecture of assembly intermediates , 2006, Proceedings of the National Academy of Sciences.

[34]  Christopher M Dobson,et al.  Characterization of the nanoscale properties of individual amyloid fibrils , 2006, Proceedings of the National Academy of Sciences.

[35]  Xiaojun Zhao,et al.  Molecular designer self-assembling peptides. , 2006, Chemical Society reviews.

[36]  S. Jarvis,et al.  Nanoscale Mechanical Characterisation of Amyloid Fibrils Discovered in a Natural Adhesive , 2006, Journal of biological physics.

[37]  Chwee Teck Lim,et al.  Experimental techniques for single cell and single molecule biomechanics , 2006 .

[38]  R. Rappaport Intersex Management: What Is Achieved and What Is Needed , 2006, Hormone Research in Paediatrics.

[39]  S. Sen,et al.  Matrix Elasticity Directs Stem Cell Lineage Specification , 2006, Cell.

[40]  Hendrik Dietz,et al.  Anisotropic deformation response of single protein molecules , 2006, Proceedings of the National Academy of Sciences.

[41]  Markus J. Buehler,et al.  Nature designs tough collagen: Explaining the nanostructure of collagen fibrils , 2006, Proceedings of the National Academy of Sciences.

[42]  R. Superfine,et al.  Fibrin Fibers Have Extraordinary Extensibility and Elasticity , 2006, Science.

[43]  Tom Misteli,et al.  Distinct structural and mechanical properties of the nuclear lamina in Hutchinson–Gilford progeria syndrome , 2006, Proceedings of the National Academy of Sciences.

[44]  C. Dobson,et al.  Protein misfolding, functional amyloid, and human disease. , 2006, Annual review of biochemistry.

[45]  D. Ingber,et al.  Cellular mechanotransduction: putting all the pieces together again , 2006, FASEB journal : official publication of the Federation of American Societies for Experimental Biology.

[46]  Lewis E. Kay,et al.  New Tools Provide New Insights in NMR Studies of Protein Dynamics , 2006, Science.

[47]  Gerhard Hummer,et al.  Intrinsic rates and activation free energies from single-molecule pulling experiments. , 2006, Physical review letters.

[48]  H. Kahn,et al.  Nano measurements with micro-devices: mechanical properties of hydrated collagen fibrils , 2006, Journal of The Royal Society Interface.

[49]  T. Magin,et al.  Mutations in vimentin disrupt the cytoskeleton in fibroblasts and delay execution of apoptosis. , 2006, European journal of cell biology.

[50]  Andreas Mershin,et al.  A classic assembly of nanobiomaterials , 2005, Nature Biotechnology.

[51]  Gerry McDermott,et al.  X-ray tomography of whole cells. , 2005, Current opinion in structural biology.

[52]  Jacqueline A. Cutroni,et al.  Sacrificial bonds and hidden length dissipate energy as mineralized fibrils separate during bone fracture , 2005, Nature materials.

[53]  M. Drew,et al.  β-Sheet mediated self-assembly of dipeptides of ω-amino acids and remarkable fibrillation in the solid state , 2005 .

[54]  Eric J. Sorin,et al.  How well can simulation predict protein folding kinetics and thermodynamics? , 2005, Annual review of biophysics and biomolecular structure.

[55]  Stefan Schinkinger,et al.  Optical deformability as an inherent cell marker for testing malignant transformation and metastatic competence. , 2005, Biophysical journal.

[56]  David A. Tirrell,et al.  Controlled Assembly of Macromolecular β-Sheet Fibrils , 2005 .

[57]  C. Hall,et al.  Molecular dynamics simulations of spontaneous fibril formation by random-coil peptides. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[58]  Ueli Aebi,et al.  Molecular mechanisms underlying the assembly of intermediate filaments. , 2004, Experimental cell research.

[59]  M. Omary,et al.  Intermediate filament proteins and their associated diseases. , 2004, The New England journal of medicine.

[60]  Kai-Nan An,et al.  Stretching type II collagen with optical tweezers. , 2004, Journal of biomechanics.

[61]  U. Aebi,et al.  Crystal structure of the human lamin A coil 2B dimer: implications for the head-to-tail association of nuclear lamins. , 2004, Journal of molecular biology.

[62]  P. Fratzl,et al.  Synchrotron diffraction study of deformation mechanisms in mineralized tendon. , 2004, Physical review letters.

[63]  Howard J Worman,et al.  The nuclear envelope and human disease. , 2004, Physiology.

[64]  Alexander D. MacKerell Empirical force fields for biological macromolecules: Overview and issues , 2004, J. Comput. Chem..

[65]  Roger D Kamm,et al.  Kinetic control of dimer structure formation in amyloid fibrillogenesis. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[66]  Georg E Fantner,et al.  High-resolution AFM imaging of intact and fractured trabecular bone. , 2004, Bone.

[67]  Subra Suresh,et al.  Large deformation of living cells using laser traps , 2004 .

[68]  R. Langer,et al.  Designing materials for biology and medicine , 2004, Nature.

[69]  Richard T. Lee,et al.  Lamin A/C deficiency causes defective nuclear mechanics and mechanotransduction. , 2004, The Journal of clinical investigation.

[70]  U. Schwarz,et al.  Stability of adhesion clusters under constant force. , 2004, Physical review letters.

[71]  David L Kaplan,et al.  Mapping domain structures in silks from insects and spiders related to protein assembly. , 2004, Journal of molecular biology.

[72]  G. Pharr,et al.  Measurement of hardness and elastic modulus by instrumented indentation: Advances in understanding and refinements to methodology , 2004 .

[73]  C. Dobson Protein folding and misfolding , 2003, Nature.

[74]  T. Aigner,et al.  Collagens--structure, function, and biosynthesis. , 2003, Advanced drug delivery reviews.

[75]  Gerhard Hummer,et al.  Kinetics from nonequilibrium single-molecule pulling experiments. , 2003, Biophysical journal.

[76]  K. Tryggvason,et al.  Alport's syndrome, Goodpasture's syndrome, and type IV collagen. , 2003, The New England journal of medicine.

[77]  Huajian Gao,et al.  Materials become insensitive to flaws at nanoscale: Lessons from nature , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[78]  H. Jaeger,et al.  Conducting nanowires built by controlled self-assembly of amyloid fibers and selective metal deposition , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[79]  R. Ritchie,et al.  Mechanistic fracture criteria for the failure of human cortical bone , 2003, Nature materials.

[80]  Ueli Aebi,et al.  Molecular architecture of intermediate filaments , 2003, BioEssays : news and reviews in molecular, cellular and developmental biology.

[81]  P. Janmey,et al.  Assembly and structure of neurofilaments , 2003 .

[82]  Ueli Aebi,et al.  Intermediate filaments: molecular structure, assembly mechanism, and integration into functionally distinct intracellular Scaffolds. , 2003, Annual review of biochemistry.

[83]  T J Sims,et al.  Properties of Collagen in OIM Mouse Tissues , 2003, Connective tissue research.

[84]  M. Goh,et al.  Hierarchical assembly and the onset of banding in fibrous long spacing collagen revealed by atomic force microscopy. , 2002, Matrix biology : journal of the International Society for Matrix Biology.

[85]  J. Berg,et al.  Molecular dynamics simulations of biomolecules , 2002, Nature Structural Biology.

[86]  C. Stewart,et al.  Life at the edge: the nuclear envelope and human disease , 2002, Nature Reviews Molecular Cell Biology.

[87]  J. Hardy,et al.  The Amyloid Hypothesis of Alzheimer ’ s Disease : Progress and Problems on the Road to Therapeutics , 2009 .

[88]  Mariano Carrion-Vazquez,et al.  The mechanical hierarchies of fibronectin observed with single-molecule AFM. , 2002, Journal of molecular biology.

[89]  Paul K. Hansma,et al.  Bone indentation recovery time correlates with bond reforming time , 2001, Nature.

[90]  P. Fratzl,et al.  Age- and genotype-dependence of bone material properties in the osteogenesis imperfecta murine model (oim). , 2001, Bone.

[91]  J. V. Hest,et al.  Protein-based materials, toward a new level of structural control. , 2001, Chemical communications.

[92]  D. Selkoe Alzheimer's disease: genes, proteins, and therapy. , 2001, Physiological reviews.

[93]  G. Hummer,et al.  Free energy reconstruction from nonequilibrium single-molecule pulling experiments , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[94]  K. Wilson,et al.  Lamins and Disease Insights into Nuclear Infrastructure , 2001, Cell.

[95]  Piotr E. Marszalek,et al.  Stretching single molecules into novel conformations using the atomic force microscope , 2000, Nature Structural Biology.

[96]  D. M. Morgan,et al.  Structure of the β-Amyloid(10-35) Fibril , 2000 .

[97]  K. Kadler,et al.  Tip-mediated fusion involving unipolar collagen fibrils accounts for rapid fibril elongation, the occurrence of fibrillar branched networks in skin and the paucity of collagen fibril ends in vertebrates. , 2000, Matrix biology : journal of the International Society for Matrix Biology.

[98]  U. Seifert,et al.  Rupture of multiple parallel molecular bonds under dynamic loading. , 2000, Physical review letters.

[99]  Mark A. Lantz,et al.  Stretching the α-helix: a direct measure of the hydrogen-bond energy of a single-peptide molecule , 1999 .

[100]  Klaus Schulten,et al.  Mechanical unfolding intermediates in titin modules , 1999, Nature.

[101]  A. Oberhauser,et al.  The study of protein mechanics with the atomic force microscope. , 1999, Trends in biochemical sciences.

[102]  A L Boskey,et al.  The Material Basis for Reduced Mechanical Properties in oim Mice Bones , 1999, Journal of bone and mineral research : the official journal of the American Society for Bone and Mineral Research.

[103]  R. Merkel,et al.  Energy landscapes of receptor–ligand bonds explored with dynamic force spectroscopy , 1999, Nature.

[104]  Matthias Rief,et al.  Elastically Coupled Two-Level Systems as a Model for Biopolymer Extensibility , 1998 .

[105]  Guy Riddihough,et al.  Structure of collagen , 1998, Nature Structural Biology.

[106]  Steve Weiner,et al.  THE MATERIAL BONE: Structure-Mechanical Function Relations , 1998 .

[107]  D. Wirtz,et al.  Reversible hydrogels from self-assembling artificial proteins. , 1998, Science.

[108]  B. Brodsky,et al.  Altered collagen structure in mouse tail tendon lacking the α2(I) chain , 1997 .

[109]  P. Fratzl,et al.  Collagen from the osteogenesis imperfecta mouse model (oim) shows reduced resistance against tensile stress. , 1997, The Journal of clinical investigation.

[110]  M. Rief,et al.  Reversible unfolding of individual titin immunoglobulin domains by AFM. , 1997, Science.

[111]  E. Evans,et al.  Dynamic strength of molecular adhesion bonds. , 1997, Biophysical journal.

[112]  N. Sasaki,et al.  Elongation mechanism of collagen fibrils and force-strain relations of tendon at each level of structural hierarchy. , 1996, Journal of biomechanics.

[113]  K Schulten,et al.  VMD: visual molecular dynamics. , 1996, Journal of molecular graphics.

[114]  P. Fratzl,et al.  Bone mineralization in an osteogenesis imperfecta mouse model studied by small-angle x-ray scattering. , 1996, The Journal of clinical investigation.

[115]  P. Haris,et al.  The conformational analysis of peptides using fourier transform IR spectroscopy , 1995, Biopolymers.

[116]  D J Prockop,et al.  Radial packing, order, and disorder in collagen fibrils. , 1995, Biophysical journal.

[117]  E. Siggia,et al.  Entropic elasticity of lambda-phage DNA. , 1994, Science.

[118]  A. Rich,et al.  Unusually stable β‐sheet formation in an ionic self‐complementary oligopeptide , 1994 .

[119]  B Russell,et al.  Lessons from nature. , 1993, Nursing.

[120]  P. Byers,et al.  Osteogenesis imperfecta: translation of mutation to phenotype. , 1991, Journal of medical genetics.

[121]  P. Hänggi,et al.  Reaction-rate theory: fifty years after Kramers , 1990 .

[122]  U. Aebi,et al.  The nuclear lamina is a meshwork of intermediate-type filaments , 1986, Nature.

[123]  J. Davies,et al.  Molecular Biology of the Cell , 1983, Bristol Medico-Chirurgical Journal.

[124]  G. I. Bell Models for the specific adhesion of cells to cells. , 1978, Science.

[125]  G J Williams,et al.  The Protein Data Bank: a computer-based archival file for macromolecular structures. , 1978, Archives of biochemistry and biophysics.

[126]  G J Williams,et al.  The Protein Data Bank: a computer-based archival file for macromolecular structures. , 1977, Journal of molecular biology.

[127]  S. N. Zhurkov Kinetic concept of the strength of solids , 1965, International journal of fracture mechanics.

[128]  H. Kramers Brownian motion in a field of force and the diffusion model of chemical reactions , 1940 .

[129]  Ashkan Vaziri,et al.  Cell and biomolecular mechanics in silico. , 2008, Nature materials.

[130]  A. Cumano,et al.  Forced Unfolding of Proteins Within Cells , 2007 .

[131]  Ashkan Vaziri,et al.  Mechanics and deformation of the nucleus in micropipette aspiration experiment. , 2007, Journal of biomechanics.

[132]  Markus J Buehler,et al.  Hierarchies, multiple energy barriers, and robustness govern the fracture mechanics of alpha-helical and beta-sheet protein domains. , 2007, Proceedings of the National Academy of Sciences of the United States of America.

[133]  L. Hood,et al.  Reverse Engineering of Biological Complexity , 2007 .

[134]  M. Drew,et al.  beta-Sheet mediated self-assembly of dipeptides of omega-amino acids and remarkable fibrillation in the solid state. , 2005, Organic and biomolecular chemistry.

[135]  Katherine L. Wilson,et al.  The nuclear lamina comes of age , 2005, Nature Reviews Molecular Cell Biology.

[136]  David A Tirrell,et al.  Controlled assembly of macromolecular beta-sheet fibrils. , 2005, Angewandte Chemie.

[137]  Ning Wang,et al.  Mechanics of vimentin intermediate filaments , 2004, Journal of Muscle Research & Cell Motility.

[138]  Keith E. Mostov,et al.  INTERNATIONAL REVIEW OF CYTOLOGY - A SURVEY OF CELL BIOLOGY, VOL 232 , 2003 .

[139]  S. Suresha,et al.  Mechanics of the human red blood cell deformed by optical tweezers , 2003 .

[140]  E. Evans Probing the relation between force--lifetime--and chemistry in single molecular bonds. , 2001, Annual review of biophysics and biomolecular structure.

[141]  P. Kollman,et al.  Biomolecular simulations: recent developments in force fields, simulations of enzyme catalysis, protein-ligand, protein-protein, and protein-nucleic acid noncovalent interactions. , 2001, Annual review of biophysics and biomolecular structure.

[142]  T. Ideker,et al.  A new approach to decoding life: systems biology. , 2001, Annual review of genomics and human genetics.

[143]  Mark S. Shearman,et al.  Amyloid-β Hypothesis of Alzheimer’s Disease , 1998 .

[144]  Z. Shao,et al.  Biological atomic force microscopy: what is achieved and what is needed , 1996 .

[145]  H. Mantsch,et al.  The use and misuse of FTIR spectroscopy in the determination of protein structure. , 1995, Critical reviews in biochemistry and molecular biology.

[146]  D J Prockop,et al.  Collagens: molecular biology, diseases, and potentials for therapy. , 1995, Annual review of biochemistry.

[147]  A. Rich,et al.  Unusually stable beta-sheet formation in an ionic self-complementary oligopeptide. , 1994, Biopolymers.

[148]  P. Hansma,et al.  Atomic force microscopy , 1990, Nature.

[149]  William Thomas Astbury,et al.  X-Ray Studies of the Structure of Hair, Wool, and Related Fibres. I. General , 1932 .

[150]  P. Esposito,et al.  Osteogenesis Imperfecta. , 1928, Proceedings of the Royal Society of Medicine.