First-in-Humans Imaging with 89Zr-Df-IAB22M2C Anti-CD8 Minibody in Patients with Solid Malignancies: Preliminary Pharmacokinetics, Biodistribution, and Lesion Targeting

Immunotherapy is becoming the mainstay for treatment of a variety of malignancies, but only a subset of patients responds to treatment. Tumor-infiltrating CD8-positive (CD8+) T lymphocytes play a central role in antitumor immune responses. Noninvasive imaging of CD8+ T cells may provide new insights into the mechanisms of immunotherapy and potentially predict treatment response. We are studying the safety and utility of 89Zr-IAB22M2C, a radiolabeled minibody against CD8+ T cells, for targeted imaging of CD8+ T cells in patients with cancer. Methods: The initial dose escalation phase of this first-in-humans prospective study included 6 patients (melanoma, 1; lung, 4; hepatocellular carcinoma, 1). Patients received approximately 111 MBq (3 mCi) of 89Zr-IAB22M2C (at minibody mass doses of 0.2, 0.5, 1.0, 1.5, 5, or 10 mg) as a single dose, followed by PET/CT scans at approximately 1–2, 6–8, 24, 48, and 96–144 h after injection. Biodistribution in normal organs, lymph nodes, and lesions was evaluated. In addition, serum samples were obtained at approximately 5, 30, and 60 min and later at the times of imaging. Patients were monitored for safety during infusion and up to the last imaging time point. Results: 89Zr-IAB22M2C infusion was well tolerated, with no immediate or delayed side effects observed after injection. Serum clearance was typically biexponential and dependent on the mass of minibody administered. Areas under the serum time–activity curve, normalized to administered activity, ranged from 1.3 h/L for 0.2 mg to 8.9 h/L for 10 mg. Biodistribution was dependent on the minibody mass administered. The highest uptake was always in spleen, followed by bone marrow. Liver uptake was more pronounced with higher minibody masses. Kidney uptake was typically low. Prominent uptake was seen in multiple normal lymph nodes as early as 2 h after injection, peaking by 24–48 h after injection. Uptake in tumor lesions was seen on imaging as early as 2 h after injection, with most 89Zr-IAB22M2C–positive lesions detectable by 24 h. Lesions were visualized early in patients receiving treatment, with SUV ranging from 5.85 to 22.8 in 6 target lesions. Conclusion: 89Zr-IAB22M2C imaging is safe and has favorable kinetics for early imaging. Biodistribution suggests successful targeting of CD8+ T-cell–rich tissues. The observed targeting of tumor lesions suggests this may be informative for CD8+ T-cell accumulation within tumors. Further evaluation is under way.

[1]  Danny F. Martinez,et al.  First-in-Human Imaging with 89Zr-Df-IAB2M Anti-PSMA Minibody in Patients with Metastatic Prostate Cancer: Pharmacokinetics, Biodistribution, Dosimetry, and Lesion Uptake , 2016, The Journal of Nuclear Medicine.

[2]  Anna M Wu,et al.  Advances in immuno-positron emission tomography: antibodies for molecular imaging in oncology. , 2012, Journal of clinical oncology : official journal of the American Society of Clinical Oncology.

[3]  Michael E. Lassman,et al.  Oncolytic Virotherapy Promotes Intratumoral T Cell Infiltration and Improves Anti-PD-1 Immunotherapy , 2017, Cell.

[4]  Hannah C. Beird,et al.  Genomic and immune heterogeneity are associated with differential responses to therapy in melanoma , 2017, npj Genomic Medicine.

[5]  G. D. de Bock,et al.  The prognostic influence of tumour-infiltrating lymphocytes in cancer: a systematic review with meta-analysis , 2011, British Journal of Cancer.

[6]  S. Larson,et al.  89Zr-DFO-J591 for ImmunoPET of Prostate-Specific Membrane Antigen Expression In Vivo , 2010, The Journal of Nuclear Medicine.

[7]  A. Wu,et al.  ImmunoPET using engineered antibody fragments: fluorine-18 labeled diabodies for same-day imaging , 2012, Tumor Biology.

[8]  Michael E. Lassman,et al.  Erratum: Oncolytic Virotherapy Promotes Intratumoral T Cell Infiltration and Improves Anti-PD-1 Immunotherapy (Cell (2017) 170(6) (1109–1119.e10) (S0092867417309522) (10.1016/j.cell.2017.08.027)) , 2018 .

[9]  Ronald Boellaard,et al.  Radiation Dosimetry of 89Zr-Labeled Chimeric Monoclonal Antibody U36 as Used for Immuno-PET in Head and Neck Cancer Patients , 2009, Journal of Nuclear Medicine.

[10]  R. Scolyer,et al.  Tumor-infiltrating lymphocyte grade is an independent predictor of sentinel lymph node status and survival in patients with cutaneous melanoma. , 2012, Journal of clinical oncology : official journal of the American Society of Clinical Oncology.

[11]  C. Drake,et al.  Safety and activity of anti-PD-L1 antibody in patients with advanced cancer. , 2012, The New England journal of medicine.

[12]  D. Morgan,et al.  Lean Body Mass as a Predictor of Drug Dosage , 1994, Clinical pharmacokinetics.

[13]  J. Brahmer PD-1-targeted immunotherapy: recent clinical findings. , 2012, Clinical advances in hematology & oncology : H&O.

[14]  David C. Smith,et al.  Safety, activity, and immune correlates of anti-PD-1 antibody in cancer. , 2012, The New England journal of medicine.

[15]  R. Tavaré,et al.  Engineered antibody fragments for immuno-PET imaging of endogenous CD8+ T cells in vivo , 2014, Proceedings of the National Academy of Sciences.

[16]  Valerie A Longo,et al.  Measuring the Pharmacodynamic Effects of a Novel Hsp90 Inhibitor on HER2/neu Expression in Mice Using 89Zr-DFO-Trastuzumab , 2010, PloS one.

[17]  R. Emerson,et al.  PD-1 blockade induces responses by inhibiting adaptive immune resistance , 2014, Nature.

[18]  Danny F. Martinez,et al.  A Phase I/II Study for Analytic Validation of 89Zr-J591 ImmunoPET as a Molecular Imaging Agent for Metastatic Prostate Cancer , 2015, Clinical Cancer Research.

[19]  Jason S. Lewis,et al.  Standardized methods for the production of high specific-activity zirconium-89. , 2009, Nuclear medicine and biology.

[20]  A. Ribas,et al.  An Effective Immuno-PET Imaging Method to Monitor CD8-Dependent Responses to Immunotherapy. , 2016, Cancer research.