The Location-Scale Mixture Exponential Power Distribution: A Bayesian and Maximum Likelihood Approach

We introduce an alternative skew-slash distribution by using the scale mixture of the exponential power distribution. We derive the properties of this distribution and estimate its parameter by Maximum Likelihood and Bayesian methods. By a simulation study we compute the mentioned estimators and their mean square errors, and we provide an example on real data to demonstrate the modeling strength of the new distribution.

[1]  W. Dixon,et al.  Robustness in real life: a study of clinical laboratory data. , 1982, Biometrics.

[2]  Hugo S. Salinas,et al.  The Extended Skew-Exponential Power Distribution and Its Derivation , 2007 .

[3]  M. Genton,et al.  The multivariate skew-slash distribution , 2006 .

[4]  Geoffrey J. McLachlan,et al.  Standard errors of fitted component means of normal mixtures , 1997 .

[5]  R. Dennis Cook,et al.  Detection of Influential Observation in Linear Regression , 2000, Technometrics.

[6]  Tsung-I Lin,et al.  Finite mixture modelling using the skew normal distribution , 2007 .

[7]  A. Azzalini,et al.  The multivariate skew-normal distribution , 1996 .

[8]  Anna Clara Monti,et al.  Inferential Aspects of the Skew Exponential Power Distribution , 2004 .

[9]  P. Embrechts Skew-Elliptical Distributions and Their Applications: A Journey Beyond Normality , 2005 .

[10]  Zhi-Dong Bai,et al.  On rates of convergence of efficient detection criteria in signal processing with white noise , 1989, IEEE Trans. Inf. Theory.

[11]  H. Bolfarine,et al.  Skew scale mixtures of normal distributions: Properties and estimation , 2011 .

[12]  Olcay Arslan,et al.  An alternative multivariate skew-slash distribution , 2008 .

[13]  H. Akaike A new look at the statistical model identification , 1974 .

[14]  Ali I. Genç A Generalization of the Univariate Slash by a Scale-Mixtured Exponential Power Distribution , 2007, Commun. Stat. Simul. Comput..

[15]  Dongming Zhu,et al.  Properties and Estimation of Asymmetric Exponential Power Distribution , 2007 .

[16]  G. Agrò Maximum likelihood estimation for the exponential power function parameters , 1995 .

[17]  A. Azzalini A class of distributions which includes the normal ones , 1985 .

[18]  A. Azzalini,et al.  Distributions generated by perturbation of symmetry with emphasis on a multivariate skew t‐distribution , 2003, 0911.2342.

[19]  Adrian F. M. Smith,et al.  On Robust Bayesian Analysis for Location and Scale Parameters , 1999 .