Update to the general amber force field for small solutes with an emphasis on free energies of hydration.

An approach to a straightforward reparametrization of the general AMBER force field (GAFF) for small organic solutes and druglike compounds is presented. The parametrization is based on specific pair interactions between the solvent and the solute, namely, the interactions between the constituting atoms of the solute and the oxygen of water were tuned in order to reproduce experimental hydration free energies for small model compounds. The key of the parametrization was to abandon the Lorentz-Berthelot combination rules for the van der Waals interactions. These parameters were then used for larger solutes in order to validate the newly derived pair interactions. In total close to 600 hydration free energies are computed, ranging from simple alkanes to multifunctional drug compounds, and compared to experimental data. The results show that the proposed parameters work well in describing the interactions between the solute and the solvent and that the agreement in absolute numbers is good. This modified version of GAFF is a good candidate for computing and predicting hydration free energies on a large scale, which has been a long-sought goal of computational chemists and can be used in rational drug design.

[1]  Igor V. Tetko,et al.  Prediction of n-Octanol/Water Partition Coefficients from PHYSPROP Database Using Artificial Neural Networks and E-State Indices , 2001, J. Chem. Inf. Comput. Sci..

[2]  Araz Jakalian,et al.  Fast, efficient generation of high‐quality atomic charges. AM1‐BCC model: I. Method , 2000 .

[3]  W. L. Jorgensen,et al.  Prediction of Properties from Simulations: Free Energies of Solvation in Hexadecane, Octanol, and Water , 2000 .

[4]  A. Mark,et al.  Avoiding singularities and numerical instabilities in free energy calculations based on molecular simulations , 1994 .

[5]  B. Hess,et al.  Hydration thermodynamic properties of amino acid analogues: a systematic comparison of biomolecular force fields and water models. , 2006, The journal of physical chemistry. B.

[6]  David L Mobley,et al.  Small molecule hydration free energies in explicit solvent: An extensive test of fixed-charge atomistic simulations. , 2009, Journal of chemical theory and computation.

[7]  Michael R. Shirts,et al.  Comparison of efficiency and bias of free energies computed by exponential averaging, the Bennett acceptance ratio, and thermodynamic integration. , 2005, The Journal of chemical physics.

[8]  Wei Zhang,et al.  A point‐charge force field for molecular mechanics simulations of proteins based on condensed‐phase quantum mechanical calculations , 2003, J. Comput. Chem..

[9]  T. Darden,et al.  A smooth particle mesh Ewald method , 1995 .

[10]  David L Mobley,et al.  Predictions of hydration free energies from all-atom molecular dynamics simulations. , 2009, The journal of physical chemistry. B.

[11]  S. H. Vosko,et al.  Accurate spin-dependent electron liquid correlation energies for local spin density calculations: a critical analysis , 1980 .

[12]  Mark E. Tuckerman,et al.  Explicit reversible integrators for extended systems dynamics , 1996 .

[13]  Pengyu Y. Ren,et al.  Polarizable Atomic Multipole Water Model for Molecular Mechanics Simulation , 2003 .

[14]  K. Berka,et al.  Positioning of antioxidant quercetin and its metabolites in lipid bilayer membranes: implication for their lipid-peroxidation inhibition. , 2012, The journal of physical chemistry. B.

[15]  Michael R. Shirts,et al.  Solvation free energies of amino acid side chain analogs for common molecular mechanics water models. , 2005, The Journal of chemical physics.

[16]  Peter M. Kasson,et al.  GROMACS 4.5: a high-throughput and highly parallel open source molecular simulation toolkit , 2013, Bioinform..

[17]  Alexander P Lyubartsev,et al.  Exploring the Free Energy Landscape of Solutes Embedded in Lipid Bilayers. , 2013, The journal of physical chemistry letters.

[18]  Chris Oostenbrink,et al.  A biomolecular force field based on the free enthalpy of hydration and solvation: The GROMOS force‐field parameter sets 53A5 and 53A6 , 2004, J. Comput. Chem..

[19]  P M Cullis,et al.  Affinities of amino acid side chains for solvent water. , 1981, Biochemistry.

[20]  Alexander D. MacKerell,et al.  Polarizable empirical force field for alkanes based on the classical Drude oscillator model. , 2005, The journal of physical chemistry. B.

[21]  Justin L. MacCallum,et al.  Partitioning of Amino Acid Side Chains into Lipid Bilayers: Results from Computer Simulations and Comparison to Experiment , 2007, The Journal of general physiology.

[22]  Christopher I. Bayly,et al.  Fast, efficient generation of high‐quality atomic charges. AM1‐BCC model: II. Parameterization and validation , 2002, J. Comput. Chem..

[23]  Margaret E. Johnson,et al.  Current status of the AMOEBA polarizable force field. , 2010, The journal of physical chemistry. B.

[24]  Karel Berka,et al.  Convergence of Free Energy Profile of Coumarin in Lipid Bilayer , 2012, Journal of chemical theory and computation.

[25]  Pengyu Y. Ren,et al.  Polarizable Atomic Multipole-based Molecular Mechanics for Organic Molecules. , 2011, Journal of chemical theory and computation.

[26]  W F Drew Bennett,et al.  The Role of Atomic Polarization in the Thermodynamics of Chloroform Partitioning to Lipid Bilayers. , 2012, Journal of chemical theory and computation.

[27]  Julien Michel,et al.  A simple QM/MM approach for capturing polarization effects in protein-ligand binding free energy calculations. , 2011, The journal of physical chemistry. B.

[28]  Alexander D. MacKerell,et al.  Accurate Calculation of Hydration Free Energies using Pair-Specific Lennard-Jones Parameters in the CHARMM Drude Polarizable Force Field. , 2010, Journal of chemical theory and computation.

[29]  Alexander D. MacKerell,et al.  CHARMM general force field: A force field for drug‐like molecules compatible with the CHARMM all‐atom additive biological force fields , 2009, J. Comput. Chem..

[30]  Michael R Shirts,et al.  A Benchmark Test Set for Alchemical Free Energy Transformations and Its Use to Quantify Error in Common Free Energy Methods. , 2011, Journal of chemical theory and computation.

[31]  Alexander D. MacKerell,et al.  Many-body polarization effects and the membrane dipole potential. , 2009, Journal of the American Chemical Society.

[32]  Jie Li,et al.  Development of polarizable models for molecular mechanical calculations I: parameterization of atomic polarizability. , 2011, The journal of physical chemistry. B.

[33]  A. Warshel Calculations of enzymatic reactions: calculations of pKa, proton transfer reactions, and general acid catalysis reactions in enzymes. , 1981, Biochemistry.

[34]  Anthony Nicholls,et al.  SAMPL2 challenge: prediction of solvation energies and tautomer ratios , 2010, J. Comput. Aided Mol. Des..

[35]  W. L. Jorgensen,et al.  Development and Testing of the OPLS All-Atom Force Field on Conformational Energetics and Properties of Organic Liquids , 1996 .

[36]  David L. Mobley,et al.  Alchemical prediction of hydration free energies for SAMPL , 2012, Journal of Computer-Aided Molecular Design.

[37]  W. Sherman,et al.  Prediction of Absolute Solvation Free Energies using Molecular Dynamics Free Energy Perturbation and the OPLS Force Field. , 2010, Journal of chemical theory and computation.

[38]  H. Berendsen,et al.  Molecular dynamics with coupling to an external bath , 1984 .

[39]  Karel Berka,et al.  Membrane Position of Ibuprofen Agrees with Suggested Access Path Entrance to Cytochrome P450 2C9 Active Site , 2011, The journal of physical chemistry. A.

[40]  Hoover,et al.  Canonical dynamics: Equilibrium phase-space distributions. , 1985, Physical review. A, General physics.

[41]  Woody Sherman,et al.  Improving the Prediction of Absolute Solvation Free Energies Using the Next Generation OPLS Force Field. , 2012, Journal of chemical theory and computation.

[42]  W. C. Swope,et al.  A computer simulation method for the calculation of equilibrium constants for the formation of physi , 1981 .

[43]  Piotr Cieplak,et al.  The R.E.D. tools: advances in RESP and ESP charge derivation and force field library building. , 2010, Physical chemistry chemical physics : PCCP.

[44]  Carsten Kutzner,et al.  GROMACS 4:  Algorithms for Highly Efficient, Load-Balanced, and Scalable Molecular Simulation. , 2008, Journal of chemical theory and computation.

[45]  Carl Caleman,et al.  Force Field Benchmark of Organic Liquids: Density, Enthalpy of Vaporization, Heat Capacities, Surface Tension, Isothermal Compressibility, Volumetric Expansion Coefficient, and Dielectric Constant , 2011, Journal of chemical theory and computation.

[46]  Michael R. Shirts,et al.  Extremely precise free energy calculations of amino acid side chain analogs: Comparison of common molecular mechanics force fields for proteins , 2003 .

[47]  Jianpeng Ma,et al.  CHARMM: The biomolecular simulation program , 2009, J. Comput. Chem..

[48]  Michael R Shirts,et al.  Simple Quantitative Tests to Validate Sampling from Thermodynamic Ensembles. , 2012, Journal of chemical theory and computation.

[49]  David L. Mobley,et al.  Predicting hydration free energies using all-atom molecular dynamics simulations and multiple starting conformations , 2010, J. Comput. Aided Mol. Des..

[50]  Greg L. Hura,et al.  Development of an improved four-site water model for biomolecular simulations: TIP4P-Ew. , 2004, The Journal of chemical physics.

[51]  Peter A. Kollman,et al.  FREE ENERGY CALCULATIONS : APPLICATIONS TO CHEMICAL AND BIOCHEMICAL PHENOMENA , 1993 .

[52]  A. Becke Density-functional thermochemistry. III. The role of exact exchange , 1993 .

[53]  M. Frisch,et al.  Ab Initio Calculation of Vibrational Absorption and Circular Dichroism Spectra Using Density Functional Force Fields , 1994 .

[54]  Junmei Wang,et al.  Development and testing of a general amber force field , 2004, J. Comput. Chem..

[55]  Christophe Chipot,et al.  Rational determination of charge distributions for free energy calculations , 2003, J. Comput. Chem..

[56]  S. Nosé A unified formulation of the constant temperature molecular dynamics methods , 1984 .

[57]  David L Mobley,et al.  The Confine-and-Release Method: Obtaining Correct Binding Free Energies in the Presence of Protein Conformational Change. , 2007, Journal of chemical theory and computation.

[58]  D. Landau,et al.  Efficient, multiple-range random walk algorithm to calculate the density of states. , 2000, Physical review letters.

[59]  D. van der Spoel,et al.  Large influence of cholesterol on solute partitioning into lipid membranes. , 2012, Journal of the American Chemical Society.

[60]  Alexander P Lyubartsev,et al.  Implicit inclusion of atomic polarization in modeling of partitioning between water and lipid bilayers. , 2013, Physical chemistry chemical physics : PCCP.

[61]  P. Kollman,et al.  A Second Generation Force Field for the Simulation of Proteins, Nucleic Acids, and Organic Molecules , 1995 .

[62]  Christophe Chipot,et al.  Derivation of Distributed Models of Atomic Polarizability for Molecular Simulations. , 2007, Journal of chemical theory and computation.

[63]  A. Lyubartsev,et al.  New approach to Monte Carlo calculation of the free energy: Method of expanded ensembles , 1992 .

[64]  W F Drew Bennett,et al.  Statistical Convergence of Equilibrium Properties in Simulations of Molecular Solutes Embedded in Lipid Bilayers. , 2011, Journal of chemical theory and computation.

[65]  Hans W. Horn,et al.  Accounting for polarization cost when using fixed charge force fields. I. Method for computing energy. , 2010, The journal of physical chemistry. B.

[66]  Benoît Roux,et al.  Computations of Absolute Solvation Free Energies of Small Molecules Using Explicit and Implicit Solvent Model. , 2009, Journal of chemical theory and computation.

[67]  T. Darden,et al.  Particle mesh Ewald: An N⋅log(N) method for Ewald sums in large systems , 1993 .

[68]  Charles H. Bennett,et al.  Efficient estimation of free energy differences from Monte Carlo data , 1976 .

[69]  W. L. Jorgensen,et al.  Comparison of simple potential functions for simulating liquid water , 1983 .

[70]  Christophe Chipot,et al.  Standard binding free energies from computer simulations: What is the best strategy? , 2013, Journal of chemical theory and computation.

[71]  T. Head-Gordon,et al.  Optimizing solute-water van der Waals interactions to reproduce solvation free energies. , 2012, The journal of physical chemistry. B.

[72]  Parr,et al.  Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. , 1988, Physical review. B, Condensed matter.

[73]  C. Vega,et al.  A general purpose model for the condensed phases of water: TIP4P/2005. , 2005, The Journal of chemical physics.

[74]  David L Mobley,et al.  Predicting small-molecule solvation free energies: an informal blind test for computational chemistry. , 2008, Journal of medicinal chemistry.

[75]  Alexander Lyubartsev,et al.  Partial atomic charges and their impact on the free energy of solvation , 2013, J. Comput. Chem..

[76]  Christian Kandt,et al.  Membrane protein simulations with a united-atom lipid and all-atom protein model: lipid–protein interactions, side chain transfer free energies and model proteins , 2006, Journal of physics. Condensed matter : an Institute of Physics journal.

[77]  Junmei Wang,et al.  Application of Molecular Dynamics Simulations in Molecular Property Prediction I: Density and Heat of Vaporization. , 2011, Journal of chemical theory and computation.

[78]  M. Tuckerman,et al.  A Liouville-operator derived measure-preserving integrator for molecular dynamics simulations in the isothermal–isobaric ensemble , 2006 .

[79]  Justin L. MacCallum,et al.  Calculation of the water–cyclohexane transfer free energies of neutral amino acid side‐chain analogs using the OPLS all‐atom force field , 2003, J. Comput. Chem..

[80]  David L Mobley,et al.  Comparison of charge models for fixed-charge force fields: small-molecule hydration free energies in explicit solvent. , 2007, The journal of physical chemistry. B.

[81]  David L. Mobley,et al.  Let’s get honest about sampling , 2011, Journal of Computer-Aided Molecular Design.

[82]  Christophe Chipot,et al.  Rational determination of transfer free energies of small drugs across the water-oil interface. , 2002, Journal of medicinal chemistry.

[83]  Hans W. Horn,et al.  Accounting for polarization cost when using fixed charge force fields. II. Method and application for computing effect of polarization cost on free energy of hydration. , 2010, The journal of physical chemistry. B.

[84]  Steven K. Burger,et al.  Efficient optimization of van der Waals parameters from bulk properties , 2013, J. Comput. Chem..

[85]  Christian Silvio Pomelli,et al.  An improved iterative solution to solve the electrostatic problem in the polarizable continuum model , 2001 .

[86]  Alexander D. MacKerell,et al.  All-atom empirical potential for molecular modeling and dynamics studies of proteins. , 1998, The journal of physical chemistry. B.

[87]  Benoît Roux,et al.  Hydration of Amino Acid Side Chains: Nonpolar and Electrostatic Contributions Calculated from Staged Molecular Dynamics Free Energy Simulations with Explicit Water Molecules , 2004 .

[88]  K. Schulten,et al.  Modeling Induction Phenomena in Intermolecular Interactions with an Ab Initio Force Field. , 2007, Journal of chemical theory and computation.

[89]  Arieh Warshel,et al.  Progress in ab initio QM/MM free-energy simulations of electrostatic energies in proteins: accelerated QM/MM studies of pKa, redox reactions and solvation free energies. , 2009, The journal of physical chemistry. B.

[90]  J. Guthrie,et al.  A blind challenge for computational solvation free energies: introduction and overview. , 2009, The journal of physical chemistry. B.

[91]  J. Tomasi,et al.  The IEF version of the PCM solvation method: an overview of a new method addressed to study molecular solutes at the QM ab initio level , 1999 .

[92]  Matthew T. Geballe,et al.  The SAMPL3 blind prediction challenge: transfer energy overview , 2012, Journal of Computer-Aided Molecular Design.

[93]  T. Straatsma,et al.  THE MISSING TERM IN EFFECTIVE PAIR POTENTIALS , 1987 .

[94]  David L Mobley,et al.  Perspective: Alchemical free energy calculations for drug discovery. , 2012, The Journal of chemical physics.

[95]  W. L. Jorgensen,et al.  The OPLS [optimized potentials for liquid simulations] potential functions for proteins, energy minimizations for crystals of cyclic peptides and crambin. , 1988, Journal of the American Chemical Society.

[96]  David L Mobley,et al.  Small Molecule Solvation Free Energy: Enhanced Conformational Sampling Using Expanded Ensemble Molecular Dynamics Simulation. , 2011, Journal of chemical theory and computation.

[97]  Régis Pomès,et al.  Accelerating Convergence in Molecular Dynamics Simulations of Solutes in Lipid Membranes by Conducting a Random Walk along the Bilayer Normal. , 2013, Journal of chemical theory and computation.

[98]  Alexander D. MacKerell,et al.  A simple polarizable model of water based on classical Drude oscillators , 2003 .

[99]  G. Ciccotti,et al.  Numerical Integration of the Cartesian Equations of Motion of a System with Constraints: Molecular Dynamics of n-Alkanes , 1977 .

[100]  Michael R. Shirts,et al.  Replica exchange and expanded ensemble simulations as Gibbs sampling: simple improvements for enhanced mixing. , 2011, The Journal of chemical physics.

[101]  W F Drew Bennett,et al.  Distribution of amino acids in a lipid bilayer from computer simulations. , 2008, Biophysical journal.

[102]  P. Kollman,et al.  Automatic atom type and bond type perception in molecular mechanical calculations. , 2006, Journal of molecular graphics & modelling.

[103]  David L Mobley,et al.  Alchemical free energy methods for drug discovery: progress and challenges. , 2011, Current opinion in structural biology.

[104]  Alexander D. MacKerell,et al.  Six-site polarizable model of water based on the classical Drude oscillator. , 2013, The Journal of chemical physics.

[105]  D. Case,et al.  Derivation of fixed partial charges for amino acids accommodating a specific water model and implicit polarization. , 2013, The journal of physical chemistry. B.

[106]  A. Leo,et al.  Partition coefficients and their uses , 1971 .