Linking Models and Experiments

This position paper gives an overview of the discussion that took place at FIPSE 2 at Aldemar Resort, east of Heraklion, Crete, in June 21–23, 2014. This is the second conference in the series “Future Innovation in Process Systems Engineering” (http://fi-in-pse.org), which takes place every other year in Greece, with the objective to discuss open research challenges in three topics in Process Systems Engineering. One of the topics of FIPSE 2 was the issue of “Linking Models and Experiments”, which is described in this publication. Process models have been used extensively in academia and industry for several decades. Yet, this paper argues that there are still substantial challenges to be addressed along the lines of model structure selection, identifiability, experiment design, nonlinear parameter estimation, model validation, model improvement, online model adaptation, model portability, modeling of complex systems, numerical methods, software environments, and implementation aspects. Although there has...

[1]  C. L. Dym Literature Review : DYNAMIC BEHAVIOR OF PROCESSES John Friedly Prentice-Hall, Inc., Englewood Cliffs, N.J. (1972) , 1974 .

[2]  B. Moore Principal component analysis in linear systems: Controllability, observability, and model reduction , 1981 .

[3]  Robert B. Schnabel,et al.  Computational experience with confidence intervals for nonlinear least squares , 1986 .

[4]  A simple algorithm for sensitivity and operability analysis of separation processes , 1985 .

[5]  George E. P. Box,et al.  Empirical Model‐Building and Response Surfaces , 1988 .

[6]  M. Browne,et al.  Alternative Ways of Assessing Model Fit , 1992 .

[7]  E. F. Vogel,et al.  A plant-wide industrial process control problem , 1993 .

[8]  Theodora Kourti,et al.  Statistical Process Control of Multivariate Processes , 1994 .

[9]  Mansour Eslami,et al.  Theory of Sensitivity in Dynamic Systems: An Introduction , 1994 .

[10]  Eric Walter,et al.  Identification of Parametric Models: from Experimental Data , 1997 .

[11]  N. Draper,et al.  Applied Regression Analysis: Draper/Applied Regression Analysis , 1998 .

[12]  William R. Esposito,et al.  Global Optimization in Parameter Estimation of Nonlinear Algebraic Models via the Error-in-Variables Approach , 1998 .

[13]  C. Pantelides,et al.  A distributed memory parallel algorithm for the efficient computation of sensitivities of differential-algebraic systems , 1998 .

[14]  Shankar Narasimhan,et al.  Data reconciliation & gross error detection: an intelligent use of process data , 1999 .

[15]  Sandro Macchietto,et al.  Statistical tools for optimal dynamic model building , 2000 .

[16]  C. Floudas,et al.  Global Optimization for the Parameter Estimation of Differential-Algebraic Systems , 2000 .

[17]  D. Himmelblau Applications of artificial neural networks in chemical engineering , 2000 .

[18]  Lorenz T. Biegler,et al.  Design for model parameter uncertainty using nonlinear confidence regions , 2001 .

[19]  S. Wold,et al.  PLS-regression: a basic tool of chemometrics , 2001 .

[20]  Steven D. Brown,et al.  Transfer of multivariate calibration models: a review , 2002 .

[21]  Thomas F. Edgar,et al.  An improved method for nonlinear model reduction using balancing of empirical gramians , 2002 .

[22]  Francis J. Doyle,et al.  Hybrid model-based approach to batch-to-batch control of particle size distribution in emulsion polymerization , 2003, Comput. Chem. Eng..

[23]  Jinghai Li,et al.  Exploring complex systems in chemical engineering - the multi-scale methodology , 2003 .

[24]  S. Joe Qin,et al.  Statistical process monitoring: basics and beyond , 2003 .

[25]  A. Stankiewicz Reactive separations for process intensification: an industrial perspective , 2003 .

[26]  Sergei S. Kucherenko,et al.  Application of Deterministic Low-Discrepancy Sequences in Global Optimization , 2005, Comput. Optim. Appl..

[27]  G. P. Rangaiah,et al.  First-Principles, Data-Based, and Hybrid Modeling and Optimization of an Industrial Hydrocracking Unit , 2006 .

[28]  M. Stadtherr,et al.  Deterministic Global Optimization for Parameter Estimation of Dynamic Systems , 2006 .

[29]  Jens Timmer,et al.  Data-based identifiability analysis of non-linear dynamical models , 2007, Bioinform..

[30]  M. Ierapetritou,et al.  A kriging method for the solution of nonlinear programs with black‐box functions , 2007 .

[31]  J. Navarro-Laboulais,et al.  Practical identifiability analysis in dynamic gas-liquid reactors: Optimal experimental design for mass-transfer parameters determination , 2008, Comput. Chem. Eng..

[32]  Clarence W. Rowley,et al.  Reduced-order models for control of fluids using the eigensystem realization algorithm , 2008, 0907.1907.

[33]  Martin Mönnigmann,et al.  Systematic identifiability testing for unambiguous mechanistic modeling – application to JAK-STAT, MAP kinase, and NF-κB signaling pathway models , 2009, BMC Systems Biology.

[34]  Sandro Macchietto,et al.  Model-based design of experiments for parameter precision: State of the art , 2008 .

[35]  Wolfgang Marquardt,et al.  An ontological conceptualization of multiscale models , 2009, Comput. Chem. Eng..

[36]  Ursula Klingmüller,et al.  Structural and practical identifiability analysis of partially observed dynamical models by exploiting the profile likelihood , 2009, Bioinform..

[37]  Erik Andries,et al.  Calibration Maintenance and Transfer Using Tikhonov Regularization Approaches , 2009, Applied spectroscopy.

[38]  Antonis Papachristodoulou,et al.  A New Computational Tool for Establishing Model Parameter Identifiability , 2009, J. Comput. Biol..

[39]  Massimiliano Barolo,et al.  A backoff strategy for model‐based experiment design under parametric uncertainty , 2009 .

[40]  Manabu Kano,et al.  Soft‐sensor development using correlation‐based just‐in‐time modeling , 2009 .

[41]  C. Georgakis,et al.  On the Calculation of Operability Sets of Nonlinear High-Dimensional Processes , 2010 .

[42]  J. Banga,et al.  Structural Identifiability of Systems Biology Models: A Critical Comparison of Methods , 2011, PloS one.

[43]  Gintaras V. Reklaitis,et al.  Process systems engineering: From Solvay to modern bio- and nanotechnology.: A history of development, successes and prospects for the future , 2011 .

[44]  Stefan Feuerriegel,et al.  Parallel sensitivity analysis for efficient large-scale dynamic optimization , 2011 .

[45]  Bogdan Gabrys,et al.  Review of adaptation mechanisms for data-driven soft sensors , 2011, Comput. Chem. Eng..

[46]  Kim B. McAuley,et al.  Mathematical modelling of chemical processes—obtaining the best model predictions and parameter estimates using identifiability and estimability procedures , 2012 .

[47]  Anthony V. Fiacco,et al.  Introduction to Sensitivity and Stability Analysis in Nonlinear Programming , 2012 .

[48]  Dominique Bonvin,et al.  On the role of the necessary conditions of optimality in structuring dynamic real-time optimization schemes , 2013, Comput. Chem. Eng..

[49]  Christos Georgakis,et al.  How To NOT Make the Extended Kalman Filter Fail , 2013 .

[50]  Christos Georgakis,et al.  Data-driven, using design of dynamic experiments, versus model-driven optimization of batch crystallization processes , 2013 .

[51]  Aidong Yang,et al.  On the Common Conceptual and Computational Frameworks for Multiscale Modeling , 2013 .

[52]  Yuzhen Xue,et al.  State reduction in molecular simulations , 2013, Comput. Chem. Eng..

[53]  Christos Georgakis,et al.  Design of Dynamic Experiments: A Data-Driven Methodology for the Optimization of Time-Varying Processes , 2013 .

[54]  Pierantonio Facco,et al.  A Methodology to Diagnose Process/Model Mismatch in First-Principles Models , 2014 .

[55]  Denis Dochain,et al.  Dynamical modelling and estimation in wastewater treatment processes. , 2015 .

[56]  Jie Yu,et al.  Soft Sensor Model Maintenance: A Case Study in Industrial Processes∗ , 2015 .

[57]  B. Likozar,et al.  Modelling chemical kinetics of a complex reaction network of active pharmaceutical ingredient (API) synthesis with process optimization for benzazepine heterocyclic compound , 2016 .