Coronene derivatives for transparent organic photovoltaics through inverse materials design

To accelerate materials discovery, computational methods such as inverse materials design, are used to design UV-absorbing coronene based derivatives that, following synthesis achieve high open-circuit voltages and visible transparencies.

[1]  Nicholas C. Davy,et al.  High‐Voltage Photogeneration Exclusively via Aggregation‐Induced Triplet States in a Heavy‐Atom‐Free Nonplanar Organic Semiconductor , 2019, Advanced Energy Materials.

[2]  S. Suram,et al.  Tracking materials science data lineage to manage millions of materials experiments and analyses , 2019, npj Computational Materials.

[3]  Geun Ho Gu,et al.  Machine learning for renewable energy materials , 2019, Journal of Materials Chemistry A.

[4]  A. Poater,et al.  Effect of Exocyclic Substituents and π-System Length on the Electronic Structure of Chichibabin Diradical(oid)s , 2019, ACS omega.

[5]  Pascal Friederich,et al.  Toward Design of Novel Materials for Organic Electronics , 2019, Advanced materials.

[6]  Krishna Rajan,et al.  New frontiers for the materials genome initiative , 2019, npj Computational Materials.

[7]  Yongsong Luo,et al.  Optimum driving energy for achieving balanced open-circuit voltage and short-circuit current density in organic bulk heterojunction solar cells. , 2018, Physical chemistry chemical physics : PCCP.

[8]  F. Matthias Bickelhaupt,et al.  Rational design of near‐infrared absorbing organic dyes: Controlling the HOMO–LUMO gap using quantitative molecular orbital theory , 2018, J. Comput. Chem..

[9]  Benjamin Rudshteyn,et al.  Inverse Design of a Catalyst for Aqueous CO/CO2 Conversion Informed by the NiII-Iminothiolate Complex. , 2018, Inorganic chemistry.

[10]  J. Brédas,et al.  Thermally Activated Delayed Fluorescence (TADF) Path toward Efficient Electroluminescence in Purely Organic Materials: Molecular Level Insight. , 2018, Accounts of chemical research.

[11]  Alán Aspuru-Guzik,et al.  Inverse molecular design using machine learning: Generative models for matter engineering , 2018, Science.

[12]  He Yan,et al.  Material insights and challenges for non-fullerene organic solar cells based on small molecular acceptors , 2018, Nature Energy.

[13]  A. Zunger Inverse design in search of materials with target functionalities , 2018 .

[14]  Tonio Buonassisi,et al.  Accelerating Materials Development via Automation, Machine Learning, and High-Performance Computing , 2018, Joule.

[15]  Yue Wang,et al.  Highly Efficient Phosphorescent Furo[3,2-c]pyridine Based Iridium Complexes with Tunable Emission Colors over the Whole Visible Range. , 2018, ACS applied materials & interfaces.

[16]  Jianfei Wu,et al.  Wide bandgap small molecular acceptors for low energy loss organic solar cells , 2017 .

[17]  Xin Lin,et al.  Pairing of near-ultraviolet solar cells with electrochromic windows for smart management of the solar spectrum , 2017, Nature Energy.

[18]  Seth R. Marder,et al.  Intrinsic non-radiative voltage losses in fullerene-based organic solar cells , 2017, Nature Energy.

[19]  Florian S. U. Fischer,et al.  The PCPDTBT Family: Correlations between Chemical Structure, Polymorphism, and Device Performance , 2017 .

[20]  Yi Zhao,et al.  Intersystem Crossing Rates of Isolated Fullerenes: Theoretical Calculations. , 2017, The journal of physical chemistry. A.

[21]  M. Benzakour,et al.  DFT and TD-DFT calculation of new thienopyrazine-based small molecules for organic solar cells , 2016, Chemistry Central Journal.

[22]  C. Suresh,et al.  A DFT study on dihydropyrazine annulated linear polyacenes: aromaticity, stability and HOMO-LUMO energy modulation. , 2016, Physical chemistry chemical physics : PCCP.

[23]  Huanrui Zhang,et al.  From Isoindigo to Dibenzonaphthyridinedione: A Building Block for Wide-Bandgap Conjugated Polymers with High Power Conversion Efficiency , 2016 .

[24]  Nicholas C. Davy,et al.  Contorted Hexabenzocoronenes with Extended Heterocyclic Moieties Improve Visible-Light Absorption and Performance in Organic Solar Cells , 2016 .

[25]  Matthew Y. Sfeir,et al.  Molecular helices as electron acceptors in high-performance bulk heterojunction solar cells , 2015, Nature Communications.

[26]  S. Mannsfeld,et al.  Role of Side‐Chain Branching on Thin‐Film Structure and Electronic Properties of Polythiophenes , 2015 .

[27]  P. Clancy,et al.  Halogenation of a Nonplanar Molecular Semiconductor to Tune Energy Levels and Bandgaps for Electron Transport , 2015 .

[28]  M. Steigerwald,et al.  Contorted polycyclic aromatics. , 2015, Accounts of chemical research.

[29]  M. Steigerwald,et al.  Efficient organic solar cells with helical perylene diimide electron acceptors. , 2014, Journal of the American Chemical Society.

[30]  E. Gomez,et al.  Azadipyrromethene‐Based Zn(II) Complexes as Nonplanar Conjugated Electron Acceptors for Organic Photovoltaics , 2014, Advanced materials.

[31]  Philippe Blanchard,et al.  Molecular Materials for Organic Photovoltaics: Small is Beautiful , 2014, Advanced materials.

[32]  J. Pablo,et al.  The Materials Genome Initiative, the interplay of experiment, theory and computation , 2014 .

[33]  Jian Pei,et al.  Roles of Flexible Chains in Organic Semiconducting Materials , 2014 .

[34]  T. He,et al.  Air‐Stable n‐Channel Organic Single Crystal Field‐Effect Transistors Based on Microribbons of Core‐Chlorinated Naphthalene Diimide , 2013, Advanced materials.

[35]  Alán Aspuru-Guzik,et al.  Confined organization of fullerene units along high polymer chains , 2013 .

[36]  Seokjoon Oh,et al.  Using self-organization to control morphology in molecular photovoltaics. , 2013, Journal of the American Chemical Society.

[37]  C. Nuckolls,et al.  Post-deposition processing methods to induce preferential orientation in contorted hexabenzocoronene thin films. , 2013, ACS nano.

[38]  R. Shivanna,et al.  Nonplanar Perylene Diimides as Potential Alternatives to Fullerenes in Organic Solar Cells. , 2012, The journal of physical chemistry letters.

[39]  C. Pearson,et al.  Colour tuning of blue electroluminescence using bipolar carbazole–oxadiazole molecules in single-active-layer organic light emitting devices (OLEDs) , 2012 .

[40]  Alán Aspuru-Guzik,et al.  The Harvard Clean Energy Project: Large-Scale Computational Screening and Design of Organic Photovoltaics on the World Community Grid , 2011 .

[41]  Alán Aspuru-Guzik,et al.  From computational discovery to experimental characterization of a high hole mobility organic crystal , 2011, Nature communications.

[42]  M. Steigerwald,et al.  Shape-shifting in contorted dibenzotetrathienocoronenes , 2011 .

[43]  David M J S Bowman,et al.  Flammable biomes dominated by eucalypts originated at the Cretaceous-Palaeogene boundary. , 2011, Nature communications.

[44]  Colin Nuckolls,et al.  Reticulated heterojunctions for photovoltaic devices. , 2010, Angewandte Chemie.

[45]  M. Steigerwald,et al.  Unusual molecular conformations in fluorinated, contorted hexabenzocoronenes. , 2010, Organic letters.

[46]  M. Steigerwald,et al.  Photovoltaic universal joints: ball-and-socket interfaces in molecular photovoltaic cells. , 2010, Chemphyschem : a European journal of chemical physics and physical chemistry.

[47]  Eunha Kim,et al.  Chemistry as a prism: a review of light-emitting materials having tunable emission wavelengths. , 2009, Chemistry, an Asian journal.

[48]  Gregor Schwartz,et al.  Triplet Harvesting in Hybrid White Organic Light‐Emitting Diodes , 2009 .

[49]  Christoph J. Brabec,et al.  Design Rules for Donors in Bulk‐Heterojunction Solar Cells—Towards 10 % Energy‐Conversion Efficiency , 2006 .

[50]  H. Tian,et al.  1,8-Naphthalimides for non-doping OLEDs: the tunable emission color from blue, green to red , 2004 .

[51]  Christoph Kuhn,et al.  Inverse Strategies for Molecular Design , 1996 .

[52]  J. Patterson The Ultraviolet Absorption Spectra of Coronene , 1942 .

[53]  Y. Nishikitani,et al.  Synthesis of Lithium-ion Conducting Polymers Designed by Machine Learning-based Prediction and Screening , 2019, Chemistry Letters.

[54]  Alán Aspuru-Guzik,et al.  Materials Acceleration Platform: Accelerating Advanced Energy Materials Discovery by Integrating High-Throughput Methods and Artificial Intelligence. , 2018 .