Local symmetries in the period-doubling sequence

Abstract We consider the infinite one-sided sequence generated by the period-doubling substitution. The number p ( n ) of palindromes of length n and the number b k ( n ) of k th powers of words of length n occurring in this sequence are computed explicitly.

[1]  Anton Bovier,et al.  GAP LABELLING THEOREMS FOR ONE DIMENSIONAL DISCRETE SCHRÖDINGER OPERATORS , 1992 .

[2]  J.-P. Allouche,et al.  Schrödinger operators with Rudin-Shapiro potentials are not palindromic , 1997 .

[3]  Giuseppe Pirillo,et al.  Palindromes and Sturmian Words , 1999, Theor. Comput. Sci..

[4]  Dimitri Petritis,et al.  Absence of localization in a class of Schrödinger operators with quasiperiodic potential , 1986 .

[5]  L. Raymond,et al.  Resistance of one-dimensional quasicrystals , 1992 .

[6]  Anton Bovier,et al.  Spectral properties of one-dimensional Schrödinger operators with potentials generated by substitutions , 1993 .

[7]  Anton Bovier,et al.  Spectral properties of a tight binding Hamiltonian with period doubling potential , 1991 .

[8]  David Damanik,et al.  α-Continuity Properties of One-Dimensional Quasicrystals , 1998 .

[9]  Barry Simon,et al.  Singular continuous spectrum for palindromic Schrödinger operators , 1995 .

[10]  David Damanik,et al.  Singular Continuous Spectrum for a Class of Substitution Hamiltonians II , 2000 .

[11]  Michael Baake A Note on Palindromicity , 1999 .

[12]  N. Sloane A Handbook Of Integer Sequences , 1973 .

[13]  Xavier Droubay,et al.  Palindromes in the Fibonacci Word , 1995, Inf. Process. Lett..

[14]  Arto Salomaa,et al.  On symmetry in strings, sequences and languages , 1994 .

[15]  B. Iochum,et al.  Power law growth for the resistance in the Fibonacci model , 1991 .

[16]  András Sütő,et al.  The spectrum of a quasiperiodic Schrödinger operator , 1987 .

[17]  M. Queffélec Substitution dynamical systems, spectral analysis , 1987 .

[18]  Jean Bellissard,et al.  Spectral properties of one dimensional quasi-crystals , 1989 .

[19]  David Damanik,et al.  Singular Continuous Spectrum for the Period Doubling Hamiltonian on a Set of Full Measure , 1998 .

[20]  András Sütő,et al.  Singular continuous spectrum on a cantor set of zero Lebesgue measure for the Fibonacci Hamiltonian , 1989 .

[21]  François Delyon,et al.  Recurrence of the eigenstates of a Schrödinger operator with automatic potential , 1991 .