New and Efficient Approaches to the Quasiperiodic Characterisation of a String

A factor u of a string y is a cover of y if every letter of y lies within some occurrence of u in y; thus every cover u is also a border – both prefix and suffix – of y. A string y covered by u thus generalises the idea of a repetition; that is, a string composed of exact concatenations of u. Even though a string is coverable somewhat more frequently than it is a repetition, still a string that can be covered by a single u is rare. As a result, seeking to find a more generally applicable and descriptive notion of cover, many articles were written on the computation of a minimum k-cover of y; that is, the minimum cardinality set of strings of length k that collectively cover y. Unfortunately, this computation turns out to be NP-hard. Therefore, in this article, we propose new, simple, easily-computed, and widely applicable notions of string covering that provide an intuitive and useful characterisation of a string and its prefixes: the enhanced cover and the enhanced cover array.

[1]  Costas S. Iliopoulos,et al.  String Regularities with Don't Cares , 2003, Nord. J. Comput..

[2]  Maxime Crochemore,et al.  Algorithms on strings , 2007 .

[3]  Maxime Crochemore,et al.  On the Right-Seed Array of a String , 2011, COCOON.

[4]  英哉 岩崎 20世紀の名著名論:D. E. Knuth J. H. Morris V. R. Pratt : Fast pattern matching in Strings , 2004 .

[5]  William F. Smyth,et al.  A Correction to "An Optimal Algorithm to Compute all the Covers of a String" , 1995, Inf. Process. Lett..

[6]  Costas S. Iliopoulos,et al.  New complexity results for the k-covers problem , 2011, Inf. Sci..

[7]  Costas S. Iliopoulos,et al.  A Work-Time Optimal Algorithm for Computing All String Covers , 1996, Theor. Comput. Sci..

[8]  William F. Smyth,et al.  Computing regularities in strings: A survey , 2013, Eur. J. Comb..

[9]  Costas S. Iliopoulos,et al.  Optimal Superprimitivity Testing for Strings , 1991, Inf. Process. Lett..

[10]  Costas S. Iliopoulos,et al.  On-line algorithms for k-Covering , 1998 .

[11]  Richard Cole,et al.  The Complexity of the Minimum k-Cover Problem , 2005, J. Autom. Lang. Comb..

[12]  William F. Smyth,et al.  An Optimal Algorithm to Compute all the Covers of a String , 1994, Inf. Process. Lett..

[13]  Costas S. Iliopoulos,et al.  Covering a String , 1993, CPM.

[14]  Dany Breslauer,et al.  An On-Line String Superprimitivity Test , 1992, Inf. Process. Lett..

[15]  Yin Li,et al.  Computing the Cover Array in Linear Time , 2001, Algorithmica.

[16]  William F. Smyth,et al.  Computing Patterns in Strings , 2003 .

[17]  M. Lothaire,et al.  Applied Combinatorics on Words , 2005 .

[18]  Wojciech Rytter,et al.  Efficient seed computation revisited , 2013, Theor. Comput. Sci..

[19]  Donald E. Knuth,et al.  Fast Pattern Matching in Strings , 1977, SIAM J. Comput..

[20]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[21]  Andrzej Ehrenfeucht,et al.  Efficient Detection of Quasiperiodicities in Strings , 1993, Theor. Comput. Sci..

[22]  Abhi Shelat,et al.  The smallest grammar problem , 2005, IEEE Transactions on Information Theory.

[23]  Gregory Kucherov,et al.  mreps: efficient and flexible detection of tandem repeats in DNA , 2003, Nucleic Acids Res..