Gravitational Wave Bursts from the Galactic Massive Black Hole

The Galactic massive black hole (MBH), with a mass of M• = 3.6× 10 6 M⊙, is the closest known MBH, at a distance of only 8 kpc. The proximity of this MBH makes it possible to observe gravitational waves from stars with periapse in the observational frequency window of the Laser Interferometer Space Antenna(LISA). This is possible even if the orbit of the star is very eccentric, so that the orbital frequency is many orders of magnitude below the LISAfrequency window, as suggested by Rubbo et al. (2006). Here we give an analytical estimate of the detection rate of such gravitational wave bursts. The burst rate is critically sensitive to the inner cut-off of the stellar density profile. Our model accounts for mass-segregation and for the physics determining the inner radius of the cusp, such as stellar collisions, energy dissipation by gravitational wave emission, and consequences of the finite number of stars. We find that stellar black holes have a burst rate of the order o f 1 yr −1 , while the rate is of order . 0.1 yr −1 for main sequence stars and white dwarfs. These analytical estimates are supported by a series of Monte Carlo samplings of the expected distribution of stars around the Galactic MBH, which yield the full probability distribution for the rates. We estimate that no burst will be observable from the Virgo cluster.

[1]  T. Alexander,et al.  Massive Perturber-driven Interactions between Stars and a Massive Black Hole , 2006, astro-ph/0606443.

[2]  K. Holley-Bockelmann,et al.  Event Rate for Extreme Mass Ratio Burst Signals in the Laser Interferometer Space Antenna Band , 2006 .

[3]  T. Alexander,et al.  The Effect of Mass Segregation on Gravitational Wave Sources near Massive Black Holes , 2006, astro-ph/0603324.

[4]  Pau Amaro-Seoane,et al.  Stellar Remnants in Galactic Nuclei: Mass Segregation , 2006 .

[5]  T. Alexander,et al.  Resonant Relaxation near a Massive Black Hole: The Stellar Distribution and Gravitational Wave Sources , 2006, astro-ph/0601161.

[6]  T. Alexander Stellar Processes Near the Massive Black Hole in the Galactic Center , 2005, astro-ph/0508106.

[7]  Norbert Hubin,et al.  SINFONI in the Galactic Center: Young Stars and Infrared Flares in the Central Light-Month , 2005 .

[8]  K. Glampedakis Extreme mass ratio inspirals: LISA's unique probe of black hole gravity , 2005, gr-qc/0509024.

[9]  T. Alexander,et al.  The Orbital Statistics of Stellar Inspiral and Relaxation near a Massive Black Hole: Characterizing Gravitational Wave Sources , 2005, astro-ph/0503672.

[10]  M. Freitag,et al.  A comprehensive set of simulations of high-velocity collisions between main-sequence stars , 2004, astro-ph/0403621.

[11]  Jessica R. Lu,et al.  Stellar Orbits around the Galactic Center Black Hole , 2003, astro-ph/0306130.

[12]  S. Tremaine,et al.  Galactic Dynamics , 2005 .

[13]  C. Cutler,et al.  Confusion Noise from LISA Capture Sources , 2004, gr-qc/0409010.

[14]  Rainer Spurzem,et al.  N-Body Growth of a Bahcall-Wolf Cusp around a Black Hole , 2004, astro-ph/0406324.

[15]  T. Ebisuzaki,et al.  Massive Black Holes in Star Clusters. I. Equal-Mass Clusters , 2004, astro-ph/0406227.

[16]  T. Ebisuzaki,et al.  Massive Black Holes in Star Clusters. II. Realistic Cluster Models , 2004, astro-ph/0406231.

[17]  Heidelberg,et al.  Weighing the cusp at the Galactic Centre , 2004, astro-ph/0402338.

[18]  C. Cutler,et al.  LISA capture sources: Approximate waveforms, signal-to-noise ratios, and parameter estimation accuracy , 2003, gr-qc/0310125.

[19]  E. Serabyn,et al.  An Extended Star Formation History for the Galactic Center from Hubble Space Telescope NICMOS Observations , 2003, astro-ph/0309757.

[20]  A. Eckart,et al.  Stellar Dynamics in the Central Arcsecond of Our Galaxy , 2003, astro-ph/0306214.

[21]  D. Rouan,et al.  The Stellar Cusp around the Supermassive Black Hole in the Galactic Center , 2003, astro-ph/0305423.

[22]  T. Alexander,et al.  Orbital In-spiral into a Massive Black Hole in a Galactic Center , 2003, astro-ph/0305062.

[23]  A. Gould,et al.  Sagittarius A* Companion S0-2: A Probe of Very High Mass Star Formation , 2003, astro-ph/0302437.

[24]  D. Thompson,et al.  The First Measurement of Spectral Lines in a Short-Period Star Bound to the Galaxy’s Central Black Hole: A Paradox of Youth , 2003, astro-ph/0302299.

[25]  D. Richstone,et al.  The Cosmic Density of Massive Black Holes from Galaxy Velocity Dispersions , 2002, astro-ph/0210573.

[26]  K. Menten,et al.  A star in a 15.2-year orbit around the supermassive black hole at the centre of the Milky Way , 2002, Nature.

[27]  S. Larson,et al.  Unequal arm space-borne gravitational wave detectors , 2002, gr-qc/0206081.

[28]  U. Bern,et al.  A new Monte Carlo code for star cluster simulations - II. Central black hole and stellar collisions , 2002, astro-ph/0204292.

[29]  P. Ivanov On the formation rate of close binaries consisting of a super‐massive black hole and a white dwarf , 2001, astro-ph/0112317.

[30]  S. Larson Online Sensitivity Curve Generator , 2002 .

[31]  M. Freitag Monte Carlo cluster simulations to determine the rate of compact star inspiralling to a central galactic black hole , 2001 .

[32]  Pasadena,et al.  Gravitational waves from a compact star in a circular, inspiral orbit, in the equatorial plane of a massive, spinning black hole, as observed by LISA , 2000, gr-qc/0007074.

[33]  Andrew Gould,et al.  A Cluster of Black Holes at the Galactic Center , 2000, astro-ph/0003269.

[34]  T. Alexander,et al.  The Distribution of Stars near the Supermassive Black Hole in the Galactic Center , 1999, astro-ph/9907241.

[35]  Peter L. Bender,et al.  Confusion noise level due to galactic and extragalactic binaries , 1997 .

[36]  M. Rees,et al.  Capture of stellar mass compact objects by massive black holes in galactic cusps , 1996, astro-ph/9608093.

[37]  Kevin P. Rauch,et al.  Resonant tidal disruption in galactic nuclei , 1996 .

[38]  E. Serabyn,et al.  Sustained star formation in the central stellar cluster of the Milky Way , 1996, Nature.

[39]  S. Tremaine,et al.  Resonant relaxation in stellar systems , 1996, astro-ph/9603018.

[40]  P. Bender,et al.  Gradual approach to coalescence for compact stars orbiting massive black holes , 1995 .

[41]  Richard H. Durisen,et al.  Dynamical and luminosity evolution of active galactic nuclei - Models with a mass spectrum , 1991 .

[42]  A. Sandage,et al.  Studies of the Virgo Cluster. II - A catalog of 2096 galaxies in the Virgo Cluster area. , 1985 .

[43]  S. Tremaine,et al.  A reinvestigation of the standard model for the dynamics of a massive black hole in a globular cluster , 1980 .

[44]  R. Kulsrud,et al.  Stellar distribution around a black hole: Numerical integration of the Fokker-Planck equation , 1978 .

[45]  R. Wolf,et al.  Star distribution around a massive black hole in a globular cluster. II. Unequal star masses , 1977 .

[46]  S. Shapiro,et al.  The distribution and consumption rate of stars around a massive, collapsed object , 1977 .

[47]  Richard A. Wolf,et al.  Star distribution around a massive black hole in a globular cluster , 1976 .

[48]  Martin J. Rees,et al.  Effects of Massive Central Black Holes on Dense Stellar Systems , 1976 .

[49]  P. J. E. Peebles,et al.  Star Distribution Near a Collapsed Object , 1972 .

[50]  Physical Review , 1965, Nature.

[51]  Subrahmanyan Chandrasekhar,et al.  Dynamical friction. I. General considerations: the coefficient of dynamical friction , 1943 .

[52]  Lee The Astronomische Nachrichten , 1858 .