On the computation of structured singular values and pseudospectra

Structured singular values and pseudospectra play an important role in assessing the properties of a linear system under structured perturbations. This paper discusses computational aspects of structured pseudospectra for structures that admit an eigenvalue minimization characterization, including the classes of real, skew-symmetric, Hermitian, and Hamiltonian perturbations. For all these structures we develop algorithms that require O (n2) operations per grid point, combining the Schur decomposition with a Lanczos method. These algorithms form the basis of a graphical Matlab interface for plotting structured pseudospectra. © 2009 Elsevier B.V. All rights reserved.

[1]  J. Canny Finding Edges and Lines in Images , 1983 .

[2]  John C. Doyle Analysis of Feedback Systems with Structured Uncertainty , 1982 .

[3]  Daniel Kressner,et al.  Structured Hölder Condition Numbers for Multiple Eigenvalues , 2009, SIAM J. Matrix Anal. Appl..

[4]  Robert H. Halstead,et al.  Matrix Computations , 2011, Encyclopedia of Parallel Computing.

[5]  Dimitri Breda,et al.  An adaptive algorithm for efficient computation of level curves of surfaces , 2009, Numerical Algorithms.

[6]  S. Rump EIGENVALUES, PSEUDOSPECTRUM AND STRUCTURED PERTURBATIONS , 2006 .

[7]  D. Hinrichsen,et al.  Robust stability of linear systems described by higher-order dynamic equations , 1993, IEEE Trans. Autom. Control..

[8]  Daniel Kressner,et al.  Structured Eigenvalue Condition Numbers , 2006, SIAM J. Matrix Anal. Appl..

[9]  Françoise Tisseur,et al.  Structured Mapping Problems for Matrices Associated with Scalar Products. Part I: Lie and Jordan Algebras , 2007, SIAM J. Matrix Anal. Appl..

[10]  Volker Mehrmann,et al.  Perturbation of purely imaginary eigenvalues of Hamiltonian matrices under structured perturbations , 2008 .

[11]  C. B. Soh,et al.  On the stability properties of polynomials with perturbed coefficients , 1985 .

[12]  L. Trefethen,et al.  Spectra and Pseudospectra , 2020 .

[13]  Charles R. Johnson,et al.  Matrix analysis , 1985, Statistical Inference for Engineers and Data Scientists.

[14]  Jack Dongarra,et al.  Templates for the Solution of Algebraic Eigenvalue Problems , 2000, Software, environments, tools.

[15]  Stefano Grivet-Talocia,et al.  Passivity enforcement via perturbation of Hamiltonian matrices , 2004, IEEE Transactions on Circuits and Systems I: Regular Papers.

[16]  Hristo S. Sendov,et al.  Nonsmooth Analysis of Singular Values. Part I: Theory , 2005 .

[17]  Françoise Chaitin-Chatelin,et al.  Lectures on finite precision computations , 1996, Software, environments, tools.

[18]  J. Demmel A counterexample for two conjectures about stability , 1987 .

[19]  Svatopluk Poljak,et al.  Checking robust nonsingularity is NP-hard , 1993, Math. Control. Signals Syst..

[20]  Michael Karow,et al.  μ-Values and Spectral Value Sets for Linear Perturbation Classes Defined by a Scalar Product , 2011, SIAM J. Matrix Anal. Appl..

[21]  S. Graillat A note on structured pseudospectra , 2006 .

[22]  Edward J. Davison,et al.  A formula for computation of the real stability radius , 1995, Autom..

[23]  Andrew Packard,et al.  The complex structured singular value , 1993, Autom..

[24]  Michael Karow,et al.  Structured Pseudospectra for Small Perturbations , 2011, SIAM J. Matrix Anal. Appl..

[25]  Ralf Hiptmair,et al.  Real interpolation of spaces of differential forms , 2012 .

[26]  Nicholas J. Higham,et al.  Structured Pseudospectra for Polynomial Eigenvalue Problems, with Applications , 2001, SIAM J. Matrix Anal. Appl..

[27]  James Demmel,et al.  The Componentwise Distance to the Nearest Singular Matrix , 1992, SIAM J. Matrix Anal. Appl..

[28]  Diederich Hinrichsen,et al.  Interconnected Systems with Uncertain Couplings: Explicit Formulae for mu-Values, Spectral Value Sets, and Stability Radii , 2006, SIAM J. Control. Optim..

[29]  Siegfried M. Rump,et al.  Structured Perturbations Part I: Normwise Distances , 2003, SIAM J. Matrix Anal. Appl..