Facile synthesis and influences of Fe/Ni ratio on the microwave absorption performance of ultra-small FeNi-C core-shell nanoparticles

[1]  Min Song,et al.  Facile synthesis of Fe/Fe3C-C core-shell nanoparticles as a high-efficiency microwave absorber , 2019, Applied Surface Science.

[2]  James L Mead,et al.  Large-scale synthesis and outstanding microwave absorption properties of carbon nanotubes coated by extremely small FeCo-C core-shell nanoparticles , 2019, Carbon.

[3]  L. Deng,et al.  Facile Fabrication of Extremely Small CoNi/C Core/Shell Nanoparticles for Efficient Microwave Absorber , 2019, Nano.

[4]  Z. Qi,et al.  Preparation of rGO/PVA/CIP composites and their microwave absorption properties , 2019, Journal of Magnetism and Magnetic Materials.

[5]  Sang Bok Lee,et al.  Magnetic and dispersible FeCoNi-graphene film produced without heat treatment for electromagnetic wave absorption , 2019, Chemical Engineering Journal.

[6]  Sheng Chu,et al.  Tunable electromagnetic wave-absorbing capability achieved in liquid-metal-based nanocomposite , 2019, Applied Physics Express.

[7]  Shengxiang Huang,et al.  Electromagnetic matching and microwave absorption abilities of Ti3SiC2 encapsulated with Ni0.5Zn0.5Fe2O4 shell , 2019, Journal of Magnetism and Magnetic Materials.

[8]  Wang Yanhui,et al.  The Distinctly Enhanced Electromagnetic Wave Absorption Properties of FeNi/rGO Nanocomposites Compared with Pure FeNi Alloys , 2019 .

[9]  A. Marwaha,et al.  Exploring the feasibility of development of nanomaterial-based microwave absorbers , 2018, International Nano Letters.

[10]  S. Sankaran,et al.  Recent advances in electromagnetic interference shielding properties of metal and carbon filler reinforced flexible polymer composites: A review , 2018, Composites Part A: Applied Science and Manufacturing.

[11]  K. Nanda,et al.  Anthocephalus cadamba shaped FeNi encapsulated carbon nanostructures for metal–air batteries as a resilient bifunctional oxygen electrocatalyst , 2018 .

[12]  Jun He,et al.  Enhanced electromagnetic wave absorption of Ni–C core-shell nanoparticles by HCP-Ni phase , 2018, Materials Research Express.

[13]  Shuangxi Nie,et al.  Highly Cuboid-Shaped Heterobimetallic Metal-Organic Frameworks Derived from Porous Co/ZnO/C Microrods with Improved Electromagnetic Wave Absorption Capabilities. , 2018, ACS applied materials & interfaces.

[14]  S. Zuo,et al.  Microwave absorption properties of 3D cross-linked Fe/C porous nanofibers prepared by electrospinning , 2018, Carbon.

[15]  Xi Yang,et al.  Optimization of porous FeNi3/N-GN composites with superior microwave absorption performance , 2018, Chemical Engineering Journal.

[16]  Lai-fei Cheng,et al.  Enhanced Flexibility and Microwave Absorption Properties of HfC/SiC Nanofiber Mats. , 2018, ACS applied materials & interfaces.

[17]  Sabu Thomas,et al.  Cellulose Nanofiber-Based Polyaniline Flexible Papers as Sustainable Microwave Absorbers in the X-Band. , 2018, ACS applied materials & interfaces.

[18]  M. Almasi-Kashi,et al.  Improvement of the microwave absorption properties in FeNi/PANI nanocomposites fabricated with different structures , 2018 .

[19]  Youwei Du,et al.  Structural and Carbonized Design of 1D FeNi/C Nanofibers with Conductive Network to Optimize Electromagnetic Parameters and Absorption Abilities , 2018 .

[20]  Congwei Liao,et al.  Peaked dielectric responses in Ti3C2 MXene nanosheets enabled composites with efficient microwave absorption , 2018 .

[21]  G. Wan,et al.  The Fabrication and High-Efficiency Electromagnetic Wave Absorption Performance of CoFe/C Core–Shell Structured Nanocomposites , 2018, Nanoscale Research Letters.

[22]  Juan Li,et al.  Economical synthesis of composites of FeNi alloy nanoparticles evenly dispersed in two-dimensional reduced graphene oxide as thin and effective electromagnetic wave absorbers , 2018, RSC Advances.

[23]  Jun He,et al.  Facile synthesis and excellent microwave absorption properties of FeCo-C core–shell nanoparticles , 2018, Nanotechnology.

[24]  R. Yu,et al.  Surface-oxidized FeCo/carbon nanotubes nanorods for lightweight and efficient microwave absorbers , 2017 .

[25]  Shengxiang Huang,et al.  Enhanced microwave absorption properties of Fe 3 O 4 -modified flaky FeSiAl , 2017 .

[26]  G. Ji,et al.  Tailoring the input impedance of FeCo/C composites with efficient broadband absorption. , 2017, Dalton transactions.

[27]  S. Bose,et al.  Recent trends in multi-layered architectures towards screening electromagnetic radiation: challenges and perspectives , 2017 .

[28]  Youwei Du,et al.  A facile one-pot strategy for fabrication of carbon-based microwave absorbers: effects on annealing and paraffin content. , 2017, Dalton transactions.

[29]  L. Zhen,et al.  Co7Fe3 and Co7Fe3@SiO2 Nanospheres with Tunable Diameters for High-Performance Electromagnetic Wave Absorption. , 2017, ACS applied materials & interfaces.

[30]  Q. Yao,et al.  Magnetic and microwave absorption properties of La-Nd-Fe alloys , 2017 .

[31]  Yang Jiang,et al.  Metal-free carbon nanotubes: synthesis, and enhanced intrinsic microwave absorption properties , 2016, Scientific Reports.

[32]  Tong Liu,et al.  Co/C nanoparticles with low graphitization degree: a high performance microwave-absorbing material , 2016 .

[33]  Bin Qu,et al.  Coupling Hollow Fe3O4-Fe Nanoparticles with Graphene Sheets for High-Performance Electromagnetic Wave Absorbing Material. , 2016, ACS applied materials & interfaces.

[34]  Xianguo Liu,et al.  Effects of particle size on the magnetic and microwave absorption properties of carbon-coated nickel nanocapsules , 2016 .

[35]  F. Gao,et al.  Fabrication and electromagnetic properties of novel FeNi alloy-coated flake graphite prepared by electroless plating , 2016 .

[36]  J. Zou,et al.  Temperature-dependent chemical state of the nickel catalyst for the growth of carbon nanofibers , 2016 .

[37]  Bao Liu,et al.  A promising broadband and thin microwave absorber based on ternary FeNi@C@polyaniline nanocomposites , 2015 .

[38]  Fashen Li,et al.  Synthesis and excellent electromagnetic wave absorption properties of parallel aligned FeCo@C core–shell nanoflake composites , 2015 .

[39]  K. Hirose,et al.  Electrical resistivity and thermal conductivity of hcp Fe-Ni alloys under high pressure: Implications for thermal convection in the Earth's core , 2015 .

[40]  S. Or,et al.  Large Scale Synthesis of Superparamagnetic Face-centered Cubic Co/C Nanocapsules by a Facile Hydrothermal Method and their Microwave Absorbing Properties , 2015 .

[41]  J. Zou,et al.  Synthesis and magnetic properties of Fe3C–C core–shell nanoparticles , 2015, Nanotechnology.

[42]  M. Zhang,et al.  Electromagnetic characteristics and microwave absorption properties of carbon-encapsulated cobalt nanoparticles in 2–18-GHz frequency range , 2014 .

[43]  J. Zou,et al.  Controlled synthesis and optical properties of Cu/C core/shell nanoparticles , 2014, Journal of Nanoparticle Research.

[44]  Jincheng Fan,et al.  A facile synthesis of FeNi3@C nanowires for electromagnetic wave absorber , 2014 .

[45]  L. Zhen,et al.  Strong dual-frequency electromagnetic absorption in Ku-band of C@FeNi3 core/shell structured microchains with negative permeability , 2014 .

[46]  J. Zhan,et al.  Template-free synthesis of Ni microfibres and their electromagnetic wave absorbing properties , 2013 .

[47]  J. Zou,et al.  Synthesis, growth mechanism and thermal stability of copper nanoparticles encapsulated by multi-layer graphene , 2012 .

[48]  J. Santamaría,et al.  Synthesis and characterization of ultra-small magnetic FeNi/G and NiCo/G nanoparticles , 2012, Nanotechnology.

[49]  T. Qiu,et al.  Preparation, characterization and microwave absorbing properties of FeNi alloy prepared by gas atomization method , 2012 .

[50]  Song Ma,et al.  Magnetic and Microwave-absorption Properties of Graphite-coated (Fe, Ni) Nanocapsules , 2011 .

[51]  X. G. Liu,et al.  Influence of a graphite shell on the thermal and electromagnetic characteristics of FeNi nanoparticles (vol 48, pg 891, 2010) , 2010 .

[52]  B. Büchner,et al.  The synthesis of carbon coated Fe, Co and Ni nanoparticles and an examination of their magnetic properties , 2009 .

[53]  Jing Li,et al.  Carbon-coated copper nanoparticles: synthesis, characterization and optical properties , 2009 .

[54]  X. G. Liu,et al.  (Fe, Ni)/C nanocapsules for electromagnetic-wave-absorber in the whole Ku-band , 2009 .

[55]  G. Liang,et al.  Synthesis and characterization of magnetic FeNi3 particles obtained by hydrazine reduction in aqueous solution , 2007 .

[56]  Jiangong Li,et al.  Microstructure and magnetic properties of Fe(x)Ni(1-x) alloy nanoplatelets. , 2005, Journal of nanoscience and nanotechnology.

[57]  A. Chiba,et al.  Preparation and magnetic properties of ultrafine particles of FeNi alloys , 1997 .