Valid implementation of Sinc-collocation method to solve the fuzzy Fredholm integral equation

Abstract The main purpose of this work is to validate the numerical solution of fuzzy Fredholm integral equation (IE) by applying the Sinc-collocation method (S-CM) based on the double exponential (DE) and single exponential (SE) decays. This approach is based on the discrete stochastic arithmetic (DSA) which is able to validate the results with optimal solution and rely the proposed algorithm in comparison with the floating-point arithmetic (FPA). In order to achieve this goal, the fuzzy CESTAC 1 method and the CADNA 2 library are applied. The accuracy of the S-CM in both SE and DE cases is discussed by proving the theorems. Also, two numerical algorithms based on the S-CM in SE and DE decays by applying the fuzzy CESTAC method and CADNA library are presented. The termination criterion in each algorithm is based on the Hausdorff distance to be an informatical zero. By solving the examples, not only the optimal approximation and the optimal iteration of the S-CM can be found but also similar to the non-fuzzy case, it is shown that the DE precision is more accurate with faster convergence rate than the SE.

[1]  T. Allahviranloo,et al.  Application of fuzzy differential transform method for solving fuzzy Volterra integral equations , 2013 .

[2]  Masaaki Sugihara,et al.  Sinc-collocation methods for weakly singular Fredholm integral equations of the second kind , 2010, J. Comput. Appl. Math..

[3]  N. lliot Data error analysis in unconstrained optimization problems with the CESTAC method , 1988 .

[4]  Hasan Barzegar Kelishami,et al.  Dynamical control of accuracy in the fuzzy Runge-Kutta methods to estimate the solution of a fuzzy differential equation , 2016 .

[5]  Masaaki Sugihara,et al.  Error estimates with explicit constants for Sinc approximation, Sinc quadrature and Sinc indefinite integration , 2013, Numerische Mathematik.

[6]  Abraham Kandel,et al.  A new fuzzy arithmetic , 1999, Fuzzy Sets Syst..

[7]  Davod Khojasteh Salkuyeh,et al.  Optimal iterate of the power and inverse iteration methods , 2009 .

[8]  M. A. Araghi,et al.  Dynamical Control of Accuracy using the Stochastic Arithmetic to Estimate the Solution of the Fuzzy Differential Equations via Homotopy Analysis Method , 2015 .

[9]  John N. Mordeson,et al.  Fuzzy Integral Equations , 1995, Inf. Sci..

[10]  M. A. Araghi,et al.  Finding optimal step of fuzzy Newton-Cotes integration rules by using the CESTAC method , 2017 .

[11]  Robert Fullér,et al.  Neural Fuzzy Systems , 1995 .

[12]  Fabienne Jézéquel,et al.  Dynamical Control of Computations Using the Trapezoidal and Simpson's Rules , 1998, J. Univers. Comput. Sci..

[13]  M. A. Araghi,et al.  A novel technique based on the homotopy analysis method to solve the first kind Cauchy integral equations arising in the theory of airfoils , 2016 .

[14]  Mohammad Ali Fariborzi Araghi,et al.  Numerical solution of fuzzy Fredholm integral equations by the Lagrange interpolation based on the extension principle , 2011, Soft Comput..

[16]  S. Abbasbandy,et al.  A stochastic scheme for solving definite integrals , 2005 .

[17]  S. Abbasbandy,et al.  The use of the stochastic arithmetic to estimate the value of interpolation polynomial with optimal degree , 2004 .

[18]  Masaaki Sugihara,et al.  Numerical solution of integral equations by means of the Sinc collocation method based on the double exponential transformation , 2005 .

[19]  Abraham Kandel,et al.  On Fuzzy Integral Equations , 1999, Fundam. Informaticae.

[20]  Osmo Kaleva Fuzzy differential equations , 1987 .

[21]  Jean Vignes,et al.  A stochastic arithmetic for reliable scientific computation , 1993 .

[22]  J. Lamotte,et al.  STOCHASTIC ARITHMETIC, THEORY AND EXPERIMENTS , 2010 .

[23]  M. A. Fariborzi Araghi,et al.  The Approximate Solution of Linear Fuzzy Fredholm Integral Equations of the Second Kind by Using Iterative Interpolation , 2009 .

[24]  R. Goetschel,et al.  Elementary fuzzy calculus , 1986 .

[25]  W. Congxin,et al.  Embedding problem of fuzzy number space: part II , 1992 .

[26]  Reza Ezzati,et al.  Numerical solution of nonlinear fuzzy Fredholm integral equations of the second kind using hybrid of block-pulse functions and Taylor series , 2015 .

[27]  Mohammad Ali Fariborzi Araghi,et al.  Solving fuzzy Fredholm linear integral equations using Sinc method and double exponential transformation , 2015, Soft Comput..

[28]  Mohammad Ali Fariborzi Araghi,et al.  Dynamical Control of Computations Using the Iterative Methods to Solve Fully Fuzzy Linear Systems , 2017, EUSFLAT/IWIFSGN.

[29]  Dimitris N. Georgiou,et al.  BOUNDED SOLUTIONS FOR FUZZY INTEGRAL EQUATIONS , 2002 .

[30]  Samad Noeiaghdam,et al.  A Valid Scheme to Evaluate Fuzzy Definite Integrals by Applying the CADNA Library , 2017, Int. J. Fuzzy Syst. Appl..

[31]  Abraham Kandel,et al.  Fuzzy linear systems , 1998, Fuzzy Sets Syst..

[32]  Khosrow Maleknejad,et al.  Application of Sinc-collocation method for solving a class of nonlinear Fredholm integral equations , 2011, Comput. Math. Appl..

[33]  Davod Khojasteh Salkuyeh,et al.  Numerical accuracy of a certain class of iterative methods for solving linear system , 2006, Appl. Math. Comput..

[34]  Saeid Abbasbandy,et al.  Finding optimal convergence control parameter in the homotopy analysis method to solve integral equations based on the stochastic arithmetic , 2018, Numerical Algorithms.

[35]  Stef Graillat,et al.  Numerical Validation of Compensated Summation Algorithms with Stochastic Arithmetic , 2015, Electron. Notes Theor. Comput. Sci..

[36]  D N Georgiou,et al.  ON FUZZY FREDHOLM AND VOLTERRA INTEGRAL EQUATIONS , 2001 .

[37]  Taher Lotfi,et al.  Fuzzy Galerkin method for solving Fredholm integral equations with error analysis , 2011 .

[38]  Abraham Kandel,et al.  Duality in fuzzy linear systems , 2000, Fuzzy Sets Syst..

[40]  M. A. Araghi,et al.  Homotopy analysis transform method for solving generalized Abel's fuzzy integral equations of the first kind , 2015, 2015 4th Iranian Joint Congress on Fuzzy and Intelligent Systems (CFIS).

[41]  M. A. Araghi,et al.  Fibonacci-regularization method for solving Cauchy integral equations of the first kind , 2017 .

[42]  Mohammad Ali Fariborzi Araghi,et al.  The numerical solution of linear fuzzy Fredholm integral equations of the second kind by using finite and divided differences methods , 2010, Soft Comput..

[43]  Esmail Babolian,et al.  Numerical method for solving linear Fredholm fuzzy integral equations of the second kind , 2007 .

[44]  F. Stenger Numerical Methods Based on Sinc and Analytic Functions , 1993 .

[45]  Esmail Babolian,et al.  Numerical solution of linear Fredholm fuzzy integral equations of the second kind by Adomian method , 2005, Appl. Math. Comput..

[46]  Young Chel Kwun,et al.  Existence of solutions of fuzzy integral equations in Banach spaces , 1995 .

[47]  Jean Vignes,et al.  Discrete Stochastic Arithmetic for Validating Results of Numerical Software , 2004, Numerical Algorithms.

[48]  Hasan Barzegar Kelishami,et al.  Homotopy analysis transform method for solving Abel’s integral equations of the first kind , 2016 .

[49]  Kenneth L. Bowers,et al.  Sinc methods for quadrature and differential equations , 1987 .

[50]  George A. Anastassiou,et al.  Fuzzy Mathematics: Approximation Theory , 2010, Studies in Fuzziness and Soft Computing.

[51]  Kamel Al-Khaled,et al.  Sinc numerical solution for solitons and solitary waves , 2001 .