Some Cases of Unrecognized Transmission of Scientific Knowledge: From Antiquity to Gabrio Piola’s Peridynamics and Generalized Continuum Theories

The aim of this paper is to show some typical mechanisms in the transmission of scientific knowledge through the study of some examples. We will start by considering some ancient examples concerning Democritus, Heron, Galileo and the history of the theory of tides. Then we will mainly focus on the works of the Italian scientist Gabrio Piola (1794–1850). In particular: 1. we show clear similarities between Noll’s postulation of mechanics and the ‘ancient’ presentation by Piola of the ideas needed to found Analytical Continuum Mechanics; 2. we prove that non-local and higher gradient continuum mechanics were conceived (and clearly formulated) already in Piola’s works; 3. we explain the reasons of the unfortunate circumstances which caused the (temporary) erasure of the memory of many among Piola’s contributions to mechanical sciences. Moreover, we discuss how the theory which has recently been called peridynamics, i.e. a mechanical theory which assumes that the force applied on a material particle of a continuum depends on the deformation state of a neighbourhood of the particle, was first formulated in Piola’s works. In this way we argue that in the passage from one a cultural tradition to another the content of scientific texts may often be lost, and it is possible to find more recent sources which are scientifically more primitive than some more ancient ones.

[1]  P. Neff,et al.  A new paradigm: the linear isotropic Cosserat model with conformally invariant curvature energy , 2009 .

[2]  Serge Prudhomme,et al.  A force-based coupling scheme for peridynamics and classical elasticity , 2013 .

[3]  Pierre Seppecher,et al.  Truss Modular Beams with Deformation Energy Depending on Higher Displacement Gradients , 2003 .

[4]  Antonio Cazzani,et al.  Isogeometric analysis: a powerful numerical tool for the elastic analysis of historical masonry arches , 2016 .

[5]  R. Lehoucq,et al.  Peridynamics for multiscale materials modeling , 2008 .

[6]  D. Steigmann A Concise Derivation of Membrane Theory from Three-Dimensional Nonlinear Elasticity , 2009 .

[7]  R. Rivlin,et al.  On cauchy's equations of motion , 1964 .

[8]  Pierre Seppecher,et al.  Moving contact lines in the Cahn-Hilliard theory , 1996 .

[9]  R. Rivlin,et al.  Simple force and stress multipoles , 1964 .

[10]  Massimo Cuomo,et al.  A new thermodynamically consistent continuum model for hardening plasticity coupled with damage , 2002 .

[11]  Luca Placidi,et al.  A variational approach for a nonlinear 1-dimensional second gradient continuum damage model , 2015 .

[12]  S. Vidoli,et al.  Generalized Hooke's law for isotropic second gradient materials , 2009, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[13]  Castrenze Polizzotto,et al.  Nonlocal elasticity and related variational principles , 2001 .

[14]  H. Altenbach,et al.  Equilibrium of a second-gradient fluid and an elastic solid with surface stresses , 2014 .

[15]  D. Capecchi,et al.  Piola’s contribution to continuum mechanics , 2007 .

[16]  Ching S. Chang,et al.  Effective elastic moduli of heterogeneous granular solids , 1993 .

[17]  R. Ogden,et al.  Plane deformations of elastic solids with intrinsic boundary elasticity , 1997, Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[18]  Silvio A. Bedini,et al.  Annali dell'Istituto e Museo di Storia della Scienza di Firenze , 1980 .

[19]  P. Seppecher,et al.  Edge Contact Forces and Quasi-Balanced Power , 1997, 1007.1450.

[20]  S. Silling Reformulation of Elasticity Theory for Discontinuities and Long-Range Forces , 2000 .

[21]  L. Zubov,et al.  The theory of elastic and viscoelastic micropolar liquids , 1999 .

[22]  Jean Le Rond d' Alembert Traité de l'équilibre et du mouvement des fluides, pour servir de suite au traité de dynamique , 1973 .

[23]  F.dell'isola,et al.  A variational approach for the deformation of a saturated porous solid. A second-gradient theory extending Terzaghi's effective stress principle , 2010, 1007.2084.

[24]  M. Epstein,et al.  Differentiable manifolds and the principle of virtual work in continuum mechanics , 1980 .

[25]  Massimo Cuomo,et al.  A framework of elastic–plastic damaging model for concrete under multiaxial stress states , 2006 .

[26]  Patrizio Neff,et al.  A GEOMETRICALLY EXACT PLANAR COSSERAT SHELL-MODEL WITH MICROSTRUCTURE: EXISTENCE OF MINIMIZERS FOR ZERO COSSERAT COUPLE MODULUS , 2007 .

[27]  D. Steigmann,et al.  Equilibrium of prestressed networks , 1992 .

[28]  A Carcaterra,et al.  Theoretical foundations of apparent-damping phenomena and nearly irreversible energy exchange in linear conservative systems. , 2007, The Journal of the Acoustical Society of America.

[29]  Tomasz Lekszycki,et al.  A continuum model for the bio-mechanical interactions between living tissue and bio-resorbable graft after bone reconstructive surgery , 2011 .

[30]  P. Papadopoulos,et al.  Multiscale constitutive modeling and numerical simulation of fabric material , 2006 .

[31]  Samuel Forest,et al.  Micromorphic Approach for Gradient Elasticity, Viscoplasticity, and Damage , 2009 .

[32]  Pierre Seppecher,et al.  Radius and surface tension of microscopic bubbles by second gradient theory , 1995, 0808.0312.

[33]  V. A. Eremeev,et al.  Nonuniqueness and stability in problems of equilibrium of elastic two-phase bodies , 2003 .

[34]  Antonina Pirrotta,et al.  Mechanically-based approach to non-local elasticity: Variational principles , 2010 .

[35]  G. Bouchitté,et al.  Minimization variational principles for acoustics, elastodynamics and electromagnetism in lossy inhomogeneous bodies at fixed frequency , 2008, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[36]  T. Winter The Mechanical Problems in the Corpus of Aristotle , 2007 .

[37]  Ugo Andreaus,et al.  At the origins and in the vanguard of peridynamics, non-local and higher-gradient continuum mechanics: An underestimated and still topical contribution of Gabrio Piola , 2013, 1310.5599.

[38]  Ying-Cheng Lai,et al.  Lattice models of polycrystalline microstructures: A quantitative approach , 2008 .

[39]  G. Ventura,et al.  Complementary energy approach to contact problems based on consistent augmented Lagrangian formulation , 1998 .

[40]  C. Truesdell,et al.  The Non-Linear Field Theories Of Mechanics , 1992 .

[41]  Albert Edward Green,et al.  Multipolar continuum mechanics: functional theory I , 1965, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.

[42]  Francesco dell’Isola,et al.  The relationship between edge contact forces, double forces and interstitial working allowed by the principle of virtual power , 1995 .

[43]  P. Germain,et al.  The Method of Virtual Power in Continuum Mechanics. Part 2: Microstructure , 1973 .

[44]  C. Boutin,et al.  Homogenisation of periodic discrete medium: Application to dynamics of framed structures , 2003 .

[45]  R. D. Mindlin Micro-structure in linear elasticity , 1964 .

[46]  G. Maugin The principle of virtual power: from eliminating metaphysical forces to providing an efficient modelling tool , 2013 .

[47]  Paul Steinmann,et al.  Studies of validity of the Cauchy–Born rule by direct comparison of continuum and atomistic modelling , 2006 .

[48]  Patrizio Neff,et al.  A geometrically exact Cosserat shell-model including size effects, avoiding degeneracy in the thin shell limit. Part I: Formal dimensional reduction for elastic plates and existence of minimizers for positive Cosserat couple modulus , 2004 .

[49]  L. Russo The forgotten revolution , 2004 .

[50]  A. Akay,et al.  Dissipation in a finite-size bath. , 2011, Physical review. E, Statistical, nonlinear, and soft matter physics.

[51]  S. Silling,et al.  Peridynamic States and Constitutive Modeling , 2007 .

[52]  The variational structure of a nonlinear theory for spatial lattices , 1996 .

[53]  F. Darve,et al.  A simple non-linear model for internal friction in modified concrete , 2014 .

[54]  P. Neff On Korn's first inequality with non-constant coefficients , 2002, Proceedings of the Royal Society of Edinburgh: Section A Mathematics.

[55]  Silvio Levy,et al.  The Forgotten Revolution: How Science Was Born in 300 BC and Why it Had to Be Reborn , 2004 .

[56]  L. Contrafatto,et al.  A globally convergent numerical algorithm for damaging elasto‐plasticity based on the Multiplier method , 2005 .

[57]  Antonio Cazzani,et al.  Isogeometric analysis of plane-curved beams , 2016 .

[58]  R. S. Rivlin,et al.  Multipolar continuum mechanics , 1964 .

[59]  W. F. Meyer,et al.  Encyklopädie der Mathematischen Wissenschaften mit Einschluss ihrer Anwendungen , 1921 .

[60]  Ivan Giorgio,et al.  Reflection and transmission of plane waves at surfaces carrying material properties and embedded in second-gradient materials , 2014 .

[61]  Paul Steinmann,et al.  On higher gradients in continuum-atomistic modelling , 2003 .

[62]  Frank Diederich,et al.  The Non Linear Field Theories Of Mechanics , 2016 .

[63]  Francesco dell’Isola,et al.  The complete works of Gabrio Piola: Volume I Commented English Translation - English and Italian Edition , 2014 .

[64]  Stéphane Hans,et al.  Generalized Beams and Continua. Dynamics of Reticulated Structures , 2010 .

[65]  R. Toupin ELASTIC MATERIALS WITH COUPLE STRESSES, ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS , 1962 .

[66]  P. Neff A finite-strain elastic–plastic Cosserat theory for polycrystals with grain rotations , 2006 .

[67]  R. Segev Forces and the existence of stresses in invariant continuum mechanics , 1986 .

[68]  L. Sedov,et al.  Irreversible Aspects of Continuum Mechanics and Transfer of Physical Characteristics in Moving Fluids , 1968 .

[69]  Patrizio Neff,et al.  Existence of minimizers for a finite-strain micromorphic elastic solid , 2006, Proceedings of the Royal Society of Edinburgh: Section A Mathematics.

[70]  Pierre Seppecher,et al.  Les fluides de Cahn-Hilliard , 1996 .

[71]  A. McBride,et al.  Geometrically Nonlinear Continuum Thermomechanics with Surface Energies Coupled to Diffusion , 2011 .

[72]  P. Neff,et al.  A geometrically exact Cosserat shell-model for defective elastic crystals. Justification via Γ-convergence , 2007 .

[73]  R. Courant Variational methods for the solution of problems of equilibrium and vibrations , 1943 .

[74]  H. Steeb,et al.  Modeling thin films applying an extended continuum theory based on a scalar-valued order parameter.: Part I: isothermal case , 2004 .

[75]  A. Eringen,et al.  On nonlocal elasticity , 1972 .

[76]  Clifford Ambrose Truesdell,et al.  A first course in rational continuum mechanics , 1976 .

[77]  Ivan Giorgio,et al.  Modeling of the interaction between bone tissue and resorbable biomaterial as linear elastic materials with voids , 2015 .

[78]  R. Toupin,et al.  Theories of elasticity with couple-stress , 1964 .

[79]  D. Steigmann Invariants of the Stretch Tensors and their Application to Finite Elasticity Theory , 2002 .

[80]  Victor A. Eremeyev,et al.  Existence of weak solutions in elasticity , 2013 .

[81]  A. Eringen,et al.  Nonlocal Continuum Field Theories , 2002 .

[82]  David J. Steigmann,et al.  Equilibrium analysis of finitely deformed elastic networks , 1996 .

[83]  Giuseppe Ruta,et al.  Di un principio controverso della meccanica analitica di lagrange e delle molteplici sue applicazioni , 2014 .

[84]  Yang Yang,et al.  Higher-Order Continuum Theory Applied to Fracture Simulation of Nanoscale Intergranular Glassy Film , 2011 .

[85]  Francesco dell’Isola,et al.  How contact interactions may depend on the shape of Cauchy cuts in Nth gradient continua: approach “à la D’Alembert” , 2012 .

[86]  A. Misra,et al.  Micromechanics based second gradient continuum theory for shear band modeling in cohesive granular materials following damage elasticity , 2012 .

[87]  P. Seppecher Equilibrium of a Cahn-Hilliard fluid on a wall: influence of the wetting properties of the fluid upon the stability of a thin liquid film , 1993 .

[88]  G. Maugin,et al.  The method of virtual power in continuum mechanics application to media presenting singular surfaces and interfaces , 1986 .

[89]  Alistair C. Crombie,et al.  THE JESUITS AND GALILEO'S IDEAS OF SCIENCE AND OF NATURE , 1983 .

[90]  M. M. G. Ricci,et al.  Méthodes de calcul différentiel absolu et leurs applications , 1900 .

[91]  R. Toupin Elastic materials with couple-stresses , 1962 .

[92]  R. Segev The Geometry of Cauchy's Fluxes , 2000 .

[93]  Paul Steinmann,et al.  On boundary potential energies in deformational and configurational mechanics , 2008 .

[94]  A. R. Hall,et al.  The Science of Mechanics in the Middle Ages , 1960 .

[95]  Francesco dell’Isola,et al.  Variational principles are a powerful tool also for formulating field theories , 2011 .

[96]  Steven J. Plimpton,et al.  Implementing peridynamics within a molecular dynamics code , 2007, Comput. Phys. Commun..

[97]  Etienne Emmrich,et al.  Peridynamics: a nonlocal continuum theory. , 2013 .

[98]  Mario Di Paola,et al.  The mechanically-based approach to 3D non-local linear elasticity theory: Long-range central interactions , 2010 .

[99]  Danilo Capecchi,et al.  Strength of Materials and Theory of Elasticity in 19th Century Italy , 2015 .

[100]  Ray W. Ogden,et al.  Elastic surface—substrate interactions , 1999, Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[101]  E. Cosserat,et al.  Théorie des Corps déformables , 1909, Nature.

[102]  Tullio Levi-Civita,et al.  The absolute differential calculus (calculus of tensors) , 1927 .

[103]  Ali Asghar Atai,et al.  On the nonlinear mechanics of discrete networks , 1997 .

[104]  Pierre Seppecher Etude des conditions aux limites en théorie du second gradient: cas de la capillarité , 1989 .

[105]  Ernst Hellinger,et al.  Die allgemeinen Ansätze der Mechanik der Kontinua , 1913 .

[106]  S. Drake,et al.  Galileo at Work: His Scientific Biography , 1969 .

[107]  Andreas Öchsner,et al.  Universal transmission conditions for thin reactive heat-conducting interphases , 2013 .

[108]  R. Lehoucq,et al.  Convergence of Peridynamics to Classical Elasticity Theory , 2008 .

[109]  P. Neff,et al.  The Cosserat couple modulus for continuous solids is zero viz the linearized Cauchy‐stress tensor is symmetric , 2006 .

[110]  A. Eringen Microcontinuum Field Theories , 2020, Advanced Continuum Theories and Finite Element Analyses.

[111]  C. Fraser,et al.  J. L. Lagrange's early contributions to the principles and methods of mechanics , 1983 .

[112]  Archive for History of Exact Sciences , 1960, Nature.

[113]  Marco Ceccarelli,et al.  The genius of Archimedes : 23 centuries of influence on mathematics, science and engineering : proceedings of an international conference held at Syracuse, Italy, June 8-10, 2010 , 2010 .

[114]  U. Baldini Legem impone subactis : studi su filosofia e scienza dei gesuiti in Italia, 1540-1632 , 1992 .

[115]  Paul Steinmann,et al.  Micro-to-macro transitions for heterogeneous material layers accounting for in-plane stretch , 2012 .

[116]  David J. Steigmann,et al.  Frame-Invariant Polyconvex Strain-Energy Functions for Some Anisotropic Solids , 2003 .

[117]  R. D. Mindlin,et al.  On first strain-gradient theories in linear elasticity , 1968 .

[118]  Tomasz Lekszycki,et al.  A 2‐D continuum model of a mixture of bone tissue and bio‐resorbable material for simulating mass density redistribution under load slowly variable in time , 2014 .

[119]  Antonio Carcaterra,et al.  Ensemble energy average and energy flow relationships for nonstationary vibrating systems , 2005 .

[120]  Yvonne Koch,et al.  Variational Principles Of Continuum Mechanics , 2016 .

[121]  Leopoldo Greco,et al.  A variational model based on isogeometric interpolation for the analysis of cracked bodies , 2014 .

[122]  Richard B. Lehoucq,et al.  Force flux and the peridynamic stress tensor , 2008 .

[123]  Yves Rémond,et al.  A second gradient continuum model accounting for some effects of micro-structure on reconstructed bone remodelling , 2012 .

[124]  Karl-Eugen Kurrer Strength of Materials and Theory of Elasticity in 19th Century Italy. A Brief Account of the History of Mechanics of Solids and Structures. Von D. Capecchi, G. Ruta , 2016 .

[125]  L. Contrafatto,et al.  Stress rate formulation for elastoplastic models with internal variables based on augmented Lagrangian regularisation , 2000 .

[126]  Esteban P. Busso,et al.  First vs. second gradient of strain theory for capillarity effects in an elastic fluid at small length scales , 2011 .

[127]  M. Herman Tensor Analysis With Applications In Mechanics , 2016 .

[128]  P. Seppecher,et al.  Modélisation of fluid-fluid interfaces with material properties , 1986 .

[129]  S. Gavrilyuk,et al.  Propagation of acoustic waves in porous media and their reflection and transmission at a pure-fluid/porous-medium permeable interface , 2010 .

[130]  Pierre Seppecher,et al.  Second-gradient theory : application to Cahn-Hilliard fluids , 2000 .

[131]  M. G. Faulkner,et al.  Variational theory for spatial rods , 1993 .

[132]  F. dell'Isola,et al.  Analytical continuum mechanics à la Hamilton–Piola least action principle for second gradient continua and capillary fluids , 2013, 1305.6744.

[133]  A Carcaterra,et al.  Near-irreversibility in a conservative linear structure with singularity points in its modal density. , 2006, The Journal of the Acoustical Society of America.

[134]  L. Sedov Variational Methods of Constructing Models of Continuous Media , 1968 .

[135]  R. D. Mindlin Second gradient of strain and surface-tension in linear elasticity , 1965 .

[136]  Ying-Cheng Lai,et al.  Statistical damage theory of 2D lattices : Energetics and physical foundations of damage parameter , 2007 .

[137]  C. Truesdell,et al.  Essays in the History of Mechanics , 1968 .

[138]  P. Demmie An Approach to Modeling Extreme Loading of Structures using Peridynamics , 2006 .

[139]  Giuseppe Piccardo,et al.  A complete dynamic approach to the Generalized Beam Theory cross-section analysis including extension and shear modes , 2014 .

[140]  P. Neff,et al.  A variational approach for materially stable anisotropic hyperelasticity , 2005 .

[141]  Claude Boutin,et al.  Non-local dynamic behavior of linear fiber reinforced materials , 2012 .

[142]  A. Misra,et al.  Higher-Order Stress-Strain Theory for Damage Modeling Implemented in an Element-free Galerkin Formulation , 2010 .

[143]  Qiang Du,et al.  Mathematical Models and Methods in Applied Sciences c ○ World Scientific Publishing Company Sandia National Labs SAND 2010-8353J A NONLOCAL VECTOR CALCULUS, NONLOCAL VOLUME-CONSTRAINED PROBLEMS, AND NONLOCAL BALANCE LAWS , 2022 .

[144]  Stéphane Hans,et al.  Effects of the local resonance on the wave propagation in periodic frame structures: generalized Newtonian mechanics. , 2012, The Journal of the Acoustical Society of America.

[145]  Yang Yang,et al.  Micromechanical model for cohesive materials based upon pseudo-granular structure , 2010 .

[146]  A. Misra,et al.  Micromechanical model for viscoelastic materials undergoing damage , 2013 .