A FPGA implementation of JPEG baseline encoder for wearable devices

In this paper, an efficient field-programmable gate array (FPGA) implementation of the JPEG baseline image compression encoder is presented for wearable devices in health and wellness applications. In order to gain flexibility in developing FPGA-specific software and balance between real-time performance and resources utilization, A High Level Synthesis (HLS) tool is utilized in our system design. An optimized dataflow configuration with a padding scheme simplifies the timing control for data transfer. Our experiments with a system-on-chip multi-sensor system have verified our FPGA implementation with respect to real-time performance, computational efficiency, and FPGA resource utilization.

[1]  Yiran Chen,et al.  eButton: A wearable computer for health monitoring and personal assistance , 2014, 2014 51st ACM/EDAC/IEEE Design Automation Conference (DAC).

[2]  Mingui Sun,et al.  A low power, parallel wearable multi-sensor system for human activity evaluation , 2015, 2015 41st Annual Northeast Biomedical Engineering Conference (NEBEC).

[3]  Sangkeun Lee,et al.  An Efficient Content-Based Image Enhancement in the Compressed Domain Using Retinex Theory , 2007, IEEE Transactions on Circuits and Systems for Video Technology.

[4]  Gregory K. Wallace,et al.  The JPEG still picture compression standard , 1992 .