Multispace KL for Pattern Representation and Classification

This work introduces the multispace Karhunen-Loeve (MKL) as a new approach to unsupervised dimensionality reduction for pattern representation and classification. The training set is automatically partitioned into disjoint subsets, according to an optimality criterion; each subset then determines a different KL subspace which is specialized in representing a particular group of patterns. The extension of the classical KL operators and the definition of ad hoc distances allow MKL to be effectively used where KL is commonly employed. The limits of the standard KL transform are pointed out, in particular, MKL is shown to outperform KL when the data distribution is far from a multidimensional Gaussian and to better cope with large sets of patterns, which could cause a severe performance drop in KL.

[1]  Hichem Frigui,et al.  A Robust Competitive Clustering Algorithm With Applications in Computer Vision , 1999, IEEE Trans. Pattern Anal. Mach. Intell..

[2]  Dario Maio,et al.  Similarity search using multi-space KL , 1999, Proceedings. Tenth International Workshop on Database and Expert Systems Applications. DEXA 99.

[3]  Keinosuke Fukunaga,et al.  Statistical Pattern Recognition , 1993, Handbook of Pattern Recognition and Computer Vision.

[4]  B. S. Manjunath,et al.  An eigenspace update algorithm for image analysis , 1995, Proceedings of International Symposium on Computer Vision - ISCV.

[5]  M. Turk,et al.  Eigenfaces for Recognition , 1991, Journal of Cognitive Neuroscience.

[6]  Dario Maio,et al.  Combining Fingerprint Classifiers , 2000, Multiple Classifier Systems.

[7]  Takeo Kanade,et al.  Use of Fourier and Karhunen-Loeve decomposition for fast pattern matching with a large set of templates , 1997, IEEE Trans. Pattern Anal. Mach. Intell..

[8]  Alex Pentland,et al.  View-based and modular eigenspaces for face recognition , 1994, 1994 Proceedings of IEEE Conference on Computer Vision and Pattern Recognition.

[9]  John A. Hartigan,et al.  Clustering Algorithms , 1975 .

[10]  Yoshihiko Hamamoto,et al.  On the estimation of a covariance matrix in designing Parzen classifiers , 1996, Pattern Recognit..

[11]  Anil K. Jain,et al.  Algorithms for Clustering Data , 1988 .

[12]  Josef Kittler,et al.  A survey of the hough transform , 1988, Comput. Vis. Graph. Image Process..

[13]  B. S. Manjunath,et al.  An Eigenspace Update Algorithm for Image Analysis , 1997, CVGIP Graph. Model. Image Process..

[14]  L Sirovich,et al.  Low-dimensional procedure for the characterization of human faces. , 1987, Journal of the Optical Society of America. A, Optics and image science.

[15]  Li Zhao,et al.  An efficient algorithm to compute eigenimages in PCA-based vision systems , 1999, Pattern Recognit..

[16]  Josef Kittler,et al.  The Adaptive Hough Transform , 1987, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[17]  Michel Loève,et al.  Probability Theory I , 1977 .

[18]  Keinosuke Fukunaga,et al.  Introduction to statistical pattern recognition (2nd ed.) , 1990 .

[19]  Juyang Weng,et al.  Using Discriminant Eigenfeatures for Image Retrieval , 1996, IEEE Trans. Pattern Anal. Mach. Intell..

[20]  Juyang Weng,et al.  Hierarchical Discriminant Analysis for Image Retrieval , 1999, IEEE Trans. Pattern Anal. Mach. Intell..

[21]  Lawrence Sirovich,et al.  Application of the Karhunen-Loeve Procedure for the Characterization of Human Faces , 1990, IEEE Trans. Pattern Anal. Mach. Intell..

[22]  R. Redner,et al.  Mixture densities, maximum likelihood, and the EM algorithm , 1984 .

[23]  Bernard Chalmond,et al.  Nonlinear Modeling of Scattered Multivariate Data and Its Application to Shape Change , 1999, IEEE Trans. Pattern Anal. Mach. Intell..

[24]  B. V. K. Vijaya Kumar,et al.  Efficient Calculation of Primary Images from a Set of Images , 1982, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[25]  Kari Karhunen,et al.  Über lineare Methoden in der Wahrscheinlichkeitsrechnung , 1947 .

[26]  Alex Pentland,et al.  Photobook: tools for content-based manipulation of image databases , 1994, Electronic Imaging.

[27]  H. Hotelling Analysis of a complex of statistical variables into principal components. , 1933 .