Electrochemical structure of the crowded cytoplasm.

[1]  Peter J Lewis Bacterial subcellular architecture: recent advances and future prospects , 2004, Molecular microbiology.

[2]  Bernhard O Palsson,et al.  Hierarchical thinking in network biology: the unbiased modularization of biochemical networks. , 2004, Trends in biochemical sciences.

[3]  B. Poolman,et al.  Bacterial osmosensing: roles of membrane structure and electrostatics in lipid-protein and protein-protein interactions. , 2004, Biochimica et biophysica acta.

[4]  Uwe Völker,et al.  A comprehensive proteome map of growing Bacillus subtilis cells , 2004, Proteomics.

[5]  M. Record,et al.  Large changes in cytoplasmic biopolymer concentration with osmolality indicate that macromolecular crowding may regulate protein–DNA interactions and growth rate in osmotically stressed Escherichia coli K‐12 , 2004, Journal of molecular recognition : JMR.

[6]  Hiroyuki Kaji,et al.  Only a Small Subset of the Horizontally Transferred Chromosomal Genes in Escherichia coli Are Translated into Proteins*S , 2004, Molecular & Cellular Proteomics.

[7]  S. Morbach,et al.  The C-terminal domain of the betaine carrier BetP of Corynebacterium glutamicum is directly involved in sensing K+ as an osmotic stimulus. , 2004, Biochemistry.

[8]  G. Caraux,et al.  The modal distribution of protein isoelectric points reflects amino acid properties rather than sequence evolution , 2004, Proteomics.

[9]  J. Spitzer Maxwellian Double Layer Forces: from Infinity to Contact , 2003 .

[10]  R. Vale The Molecular Motor Toolbox for Intracellular Transport , 2003, Cell.

[11]  J. M. Wood,et al.  Osmosensor ProP of Escherichia coli responds to the concentration, chemistry, and molecular size of osmolytes in the proteoliposome lumen. , 2003, Biochemistry.

[12]  W. Baumeister,et al.  Macromolecular Architecture in Eukaryotic Cells Visualized by Cryoelectron Tomography , 2002, Science.

[13]  Kelly K. Lee,et al.  Distance dependence and salt sensitivity of pairwise, coulombic interactions in a protein , 2002, Protein science : a publication of the Protein Society.

[14]  B. Poolman,et al.  On the osmotic signal and osmosensing mechanism of an ABC transport system for glycine betaine , 2001, The EMBO journal.

[15]  S. Morbach,et al.  The osmoreactive betaine carrier BetP from Corynebacterium glutamicum is a sensor for cytoplasmic K+ , 2001, The EMBO journal.

[16]  V. Norris Division in bacteria is determined by hyperstructure dynamics and membrane domains , 2001 .

[17]  F. Harold Gleanings of a chemiosmotic eye. , 2001, BioEssays : news and reviews in molecular, cellular and developmental biology.

[18]  S. White,et al.  Protein chemistry at membrane interfaces: non-additivity of electrostatic and hydrophobic interactions. , 2001, Journal of molecular biology.

[19]  J. M. Wood,et al.  Requirements for osmosensing and osmotic activation of transporter ProP from Escherichia coli. , 2001, Biochemistry.

[20]  A. Minton,et al.  The Influence of Macromolecular Crowding and Macromolecular Confinement on Biochemical Reactions in Physiological Media* , 2001, The Journal of Biological Chemistry.

[21]  G R Welch,et al.  Macromolecular interactions: tracing the roots. , 2000, Trends in biochemical sciences.

[22]  Lucy Shapiro,et al.  Dynamic Spatial Regulation in the Bacterial Cell , 2000, Cell.

[23]  J. Hopfield,et al.  From molecular to modular cell biology , 1999, Nature.

[24]  L. Shapiro,et al.  Changing Views on the Nature of the Bacterial Cell: from Biochemistry to Cytology , 1999, Journal of bacteriology.

[25]  J. M. Wood Osmosensing by Bacteria: Signals and Membrane-Based Sensors , 1999, Microbiology and Molecular Biology Reviews.

[26]  M. Elowitz,et al.  Protein Mobility in the Cytoplasm ofEscherichia coli , 1999, Journal of bacteriology.

[27]  Seth Fraden,et al.  Entropically driven microphase transitions in mixtures of colloidal rods and spheres , 1998, Nature.

[28]  B. Alberts The Cell as a Collection of Protein Machines: Preparing the Next Generation of Molecular Biologists , 1998, Cell.

[29]  J. Herzfeld Entropically Driven Order in Crowded Solutions:  From Liquid Crystals to Cell Biology. , 1996, Accounts of chemical research.

[30]  A. Aderem,et al.  The myristoyl-electrostatic switch: a modulator of reversible protein-membrane interactions. , 1995, Trends in biochemical sciences.

[31]  B. Honig,et al.  Classical electrostatics in biology and chemistry. , 1995, Science.

[32]  D. Brooks,et al.  Phase separation in cytoplasm, due to macromolecular crowding, is the basis for microcompartmentation , 1995, FEBS letters.

[33]  M. Burg,et al.  Macromolecular crowding and confinement in cells exposed to hypertonicity. , 1994, The American journal of physiology.

[34]  J. Spitzer Theory of dissociative electrical double layers : the limit of close separations and hydration' forces , 1992 .

[35]  Malcolm E. Davis,et al.  Electrostatics in biomolecular structure and dynamics , 1990 .

[36]  H. Westerhoff,et al.  Thermodynamics and Control of Biological Free-Energy Transduction , 1987 .

[37]  I. Booth,et al.  Regulation of cytoplasmic pH in bacteria. , 1985, Microbiological reviews.

[38]  J. Spitzer A re-interpretation of hydration forces near charged surfaces , 1984, Nature.

[39]  E. Verwey,et al.  Theory of the stability of lyophobic colloids. , 1955, The Journal of physical and colloid chemistry.

[40]  E. Shimoni,et al.  Stress, order and survival , 2002, Nature Reviews Molecular Cell Biology.

[41]  A. Verkman Solute and macromolecule diffusion in cellular aqueous compartments. , 2002, Trends in biochemical sciences.

[42]  J Ovádi,et al.  Macromolecular compartmentation and channeling. , 2000, International review of cytology.

[43]  Douglas B. Kell,et al.  Metabolic Channeling in Organized Enzyme Systems: Experiments and Models , 1995 .

[44]  A. Minton,et al.  Macromolecular crowding: biochemical, biophysical, and physiological consequences. , 1993, Annual review of biophysics and biomolecular structure.

[45]  D S Goodsell,et al.  Inside a living cell. , 1991, Trends in biochemical sciences.

[46]  J. A. V. BUTLER,et al.  Theory of the Stability of Lyophobic Colloids , 1948, Nature.

[47]  R. Ellis Macromolecular crowding : obvious but underappreciated , 2022 .