A method for construction of biosensors with membranous cytochrome P450 isoenzymes was developed based on clay/detergent/protein mixed films. Thin films of sodium montmorillonite colloid with incorporated cytochrome P450 2B4 (CYP2B4) with nonionic detergent were prepared on glassy carbon electrodes. The modified electrodes were electrochemically characterized, and bioelectrocatalytic reactions were followed. CYP2B4 can be reduced fast on clay-modified glassy carbon electrodes in the presence of the nonionic detergent Tween 80. In anaerobic solutions, reversible oxidation and reduction is obtained with a formal potential between -0.292 and -0.305 V vs Ag/AgCl 1 M KCl depending on the preparation of the biosensor. In air-saturated solution, bioelectrocatalytic reduction currents can be obtained with the CYP2B4-modified electrode on addition of typical substrates such as aminopyrine and benzphetamine. This reaction was suppressed when methyrapone, an inhibitor of P450 reactions, was present. Measurement of product formation also indicates the bioelectrocatalysis by CYP2B4.