Numerical methods for the computation of the confluent and Gauss hypergeometric functions
暂无分享,去创建一个
Mason A. Porter | Sheehan Olver | John W. Pearson | M. A. Porter | M. Porter | S. Olver | J. Pearson
[1] Walter Gautschi,et al. A Computational Procedure for Incomplete Gamma Functions , 1979, TOMS.
[2] L. Trefethen,et al. Talbot quadratures and rational approximations , 2006 .
[3] V. Pierro,et al. Computation of hyperngeometric functions for gravitationally radiating binary stars , 2002 .
[4] Jet Wimp,et al. Computation with recurrence relations , 1986 .
[5] Olga Korotkova,et al. Scintillation index of a stochastic electromagnetic beam propagating in random media , 2008 .
[6] Javier Sesma,et al. Buchholz polynomials: a family of polynomials relating solutions of confluent hypergeometric and Bessel equations , 1999 .
[7] M. V. Stoitsov,et al. Fast computation of the Gauss hypergeometric function with all its parameters complex with application to the Pöschl-Teller-Ginocchio potential wave functions , 2007, Comput. Phys. Commun..
[8] Walter Gautschi,et al. Gauss quadrature approximations to hypergeometric and confluent hypergeometric functions , 2002 .
[9] Nico M. Temme,et al. On modified asymptotic series involving confluent hypergeometric functions , 2009 .
[10] Milton Abramowitz,et al. Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables , 1964 .
[11] Fernando Damian Nieuwveldt. A survey of computational methods for pricing Asian options , 2009 .
[12] F. Olver. Asymptotics and Special Functions , 1974 .
[13] Nico M. Temme,et al. Numerically satisfactory solutions of hypergeometric recursions , 2007, Math. Comput..
[14] Cunlu Zhao,et al. An exact solution for electroosmosis of non-Newtonian fluids in microchannels , 2011 .
[15] Nico M. Temme,et al. Algorithm 819: AIZ, BIZ: two Fortran 77 routines for the computation of complex Airy functions , 2002, TOMS.
[16] A. B. Olde Daalhuis. Hyperasymptotic expansions of confluent hypergeometric functions , 1991 .
[17] Kevin Barraclough,et al. I and i , 2001, BMJ : British Medical Journal.
[18] F. W. J. Olver,et al. The Special Functions and Their Approximations (Vols. I & II Yudell L. Luke) , 1972 .
[19] José L. López,et al. The confluent hypergeometric functions M(a, b;z) and U(a, b;z) for large b and z , 2010, J. Comput. Appl. Math..
[20] W. N. Bailey. Confluent Hypergeometric Functions , 1960, Nature.
[21] P. Schmelcher,et al. The analytic continuation of the Gaussian hypergeometric function 2 F 1 ( a,b;c;z ) for arbitrary parameters , 2000 .
[22] S. Kalla,et al. ON THE EVALUATION OF THE GAUSS HYPERGEOMETRIC FUNCTION , 1992 .
[23] Yupai P. Hsu. DEVELOPMENT OF A GAUSSIAN HYPERGEOMETRIC FUNCTION CODE IN COMPLEX DOMAINS , 1993 .
[24] T. MacRobert. Higher Transcendental Functions , 1955, Nature.
[25] Michael V Berry,et al. Asymptotics, Superasymptotics, Hyperasymptotics... , 1991 .
[26] Xiao Wang,et al. Numerical methods for the mean exit time and escape probability of two-dimensional stochastic dynamical systems with non-Gaussian noises , 2015, Appl. Math. Comput..
[27] Yudell L. Luke. THE BINOMIAL FUNCTION , 1975 .
[28] D. S. Jones,et al. Asymptotics of the hypergeometric function , 2001 .
[29] William H. Press,et al. Numerical Recipes 3rd Edition: The Art of Scientific Computing , 2007 .
[30] James B. Seaborn,et al. Hypergeometric Functions and Their Applications , 1991 .
[31] Nico Temme,et al. The numerical computation of the confluent hypergeometric function u(a,b,z) : (preprint) , 1980 .
[32] N. Temme. Special Functions: An Introduction to the Classical Functions of Mathematical Physics , 1996 .
[33] Wolfgang Büring. An analytic continuation of the hypergeometric series , 1987 .
[34] Nicholas Hale,et al. Fast and Accurate Computation of Gauss-Legendre and Gauss-Jacobi Quadrature Nodes and Weights , 2013, SIAM J. Sci. Comput..
[35] Nico M. Temme,et al. Numerical methods for special functions , 2007 .
[36] D. Shanks. Non‐linear Transformations of Divergent and Slowly Convergent Sequences , 1955 .
[37] Nico M. Temme,et al. The ABC of hyper recursions , 2004 .
[38] Alessandro Vespignani,et al. Epidemic dynamics and endemic states in complex networks. , 2001, Physical review. E, Statistical, nonlinear, and soft matter physics.
[39] Gustavo Gasaneo,et al. Derivatives of any order of the confluent hypergeometric function F11(a,b,z) with respect to the parameter a or b , 2008 .
[40] Leon M. Hall,et al. Special Functions , 1998 .
[41] G. N. Watson,et al. The Harmonic Functions Associated with the Parabolic Cylinder , 2022 .
[42] A V Hershey,et al. Computation of Special Functions , 1978 .
[43] Javier Sesma,et al. Computation of the Regular Confluent Hypergeometric Function , 1995 .
[44] Stan Wagon,et al. The SIAM 100-Digit Challenge - A study in High-Accuracy Numerical Computing , 2004, The SIAM 100-Digit Challenge.
[45] Javier Segura,et al. Transitory minimal solutions of hypergeometric recursions and pseudoconvergence of associated continued fractions , 2007, Math. Comput..
[46] Matthew C. Valenti,et al. The Outage Probability of a Finite Ad Hoc Network in Nakagami Fading , 2012, IEEE Transactions on Communications.
[47] L. J. Comrie,et al. Mathematical Tables and Other Aids to Computation. , 1946 .
[48] Nico M. Temme,et al. Fast and accurate computation of the Weber parabolic cylinder function W(a, x) , 2011 .
[49] William H. Press,et al. Numerical recipes: the art of scientific computing, 3rd Edition , 2007 .
[50] Nico M. Temme. Large parameter cases of the Gauss hypergeometric function , 2002 .
[51] Richard L. Mace,et al. A dispersion function for plasmas containing superthermal particles , 1995 .
[52] Phelim Boyle,et al. Application of high-precision computing for pricing arithmetic asian options , 2006, ISSAC '06.
[53] Anatoly Efimov. Intuitive model for the scintillations of a partially coherent beam. , 2014, Optics express.
[54] C. Lanczos,et al. A Precision Approximation of the Gamma Function , 1964 .
[55] Walter Gautschi,et al. NUMERICAL EVALUATION OF SPECIAL FUNCTIONS , 2001 .
[56] A. Erdélyi,et al. Higher Transcendental Functions , 1954 .
[57] Richard J. Mathar. Numerical Representations of the Incomplete Gamma Function of Complex-Valued Argument , 2004, Numerical Algorithms.
[58] Clifford J. Noble,et al. COULN, a program for evaluating negative energy Coulomb functions , 1984 .
[59] J. Pearson. Computation of Hypergeometric Functions , 2009 .
[60] Norman Scott,et al. Coulomb functions (negative energies) , 1984 .
[61] B. Dwork. Generalized Hypergeometric Functions , 1990 .
[62] N. Temme. Uniform asymptotic expansions of confluent hypergeometric functions , 1978 .
[63] F. W. J. Olver,et al. Numerical solution of second-order linear difference equations , 1967 .
[64] J. Spouge. Computation of the gamma, digamma, and trigamma functions , 1994 .
[65] Nico M. Temme,et al. Numerical and asymptotic aspects of parabolic cylinder functions , 2001, math/0109188.
[66] Yudell L Luke. Algorithms for Rational Approximations for a Confluent Hypergeometric Function II. , 1976 .
[67] F. W. J. Olver,et al. On the Asymptotic Solution of Second-Order Differential Equations Having an Irregular Singularity of Rank One, with an Application to Whittaker Functions , 1965 .
[68] Gene H. Golub,et al. Calculation of Gauss quadrature rules , 1967, Milestones in Matrix Computation.
[69] Bernd A. Kniehl,et al. Finding new relationships between hypergeometric functions by evaluating Feynman integrals , 2011, 1108.6019.
[70] Yudell L. Luke,et al. Algorithms for the Computation of Mathematical Functions , 1977 .
[71] Giampietro Allasia,et al. Numerical computation of Tricomi's psi function by the trapezoidal rule , 1987, Computing.
[72] T. M. DUNSTERt. ASYMPTOTIC APPROXIMATIONS FOR THE JACOBI AND ULTRASPHERICAL POLYNOMIALS , AND RELATED FUNCTIONS , 2016 .
[73] F. W. J. Olver,et al. Whittaker functions with both parameters large: uniform approximations in terms of parabolic cylinder functions , 1980, Proceedings of the Royal Society of Edinburgh: Section A Mathematics.
[74] Zhi-Wei Huang,et al. NumExp: Numerical epsilon expansion of hypergeometric functions , 2012, Comput. Phys. Commun..
[75] A. B. Olde Daalhuis,et al. UNIFORM ASYMPTOTIC EXPANSIONS FOR HYPERGEOMETRIC FUNCTIONS WITH LARGE PARAMETERS III , 2003 .
[76] C. Eckart. The Penetration of a Potential Barrier by Electrons , 1930 .
[77] W. A. McConnach,et al. Uniform , 1963, Definitions.
[78] Mark Nardin,et al. Algorithm 707: CONHYP: a numerical evaluator of the confluent hypergeometric function for complex arguments of large magnitudes , 1992, TOMS.
[79] T. Mark Dunster,et al. Uniform asymptotic expansions for Whittaker's confluent hypergeometric functions , 1989 .
[80] Nico M. Temme,et al. Numerical aspects of special functions , 2007, Acta Numerica.
[81] Medhat Ahmed Rakha,et al. Application of basic hypergeometric series , 2004, Appl. Math. Comput..
[82] Nico M. Temme,et al. Numerically satisfactory solutions of Kummer recurrence relations , 2008, Numerische Mathematik.
[83] T. M. Dunsterj. UNIFORM ASYMPTOTIC EXPANSIONS FOR WHITI'AKER'S CONFLUENT HYPERGEOMETRIC FUNCTIONS* , 1989 .
[84] William H. Press,et al. Numerical Recipes: The Art of Scientific Computing , 1987 .
[85] Stephen Lloyd Baluk Moshier,et al. Methods and programs for mathematical functions , 1989 .
[86] J. A. C. Weideman,et al. Optimizing Talbot's Contours for the Inversion of the Laplace Transform , 2006, SIAM J. Numer. Anal..
[87] Arthur J Freeman,et al. Computation of the Kummer functions and Whittaker functions by using Neumann type series expansions , 1992 .
[88] C. W. Clenshaw,et al. The special functions and their approximations , 1972 .
[89] B. Gabutti,et al. A new transformation for computing hypergeometric series and the exact evaluation of the transonic adiabatic flow over a smooth bump , 1989 .
[90] J. Borwein. The SIAM 100-Digit challenge: a study in high-accuracy numerical computing , 1987 .
[91] Lloyd N. Trefethen,et al. Computing the Gamma Function Using Contour Integrals and Rational Approximations , 2007, SIAM J. Numer. Anal..
[92] N. M. Temme,et al. The numerical computation of the confluent hypergeometric functionU(a, b, z) , 1983 .
[93] Robert C. Forrey,et al. Computing the Hypergeometric Function , 1997 .
[94] Karolin Papst,et al. Functions Of Mathematical Physics , 2016 .
[95] M. Abramowitz,et al. Mathematical functions and their approximations , 1975 .
[96] Kelly Roach,et al. Hypergeometric function representations , 1996, ISSAC '96.
[97] Jerome Spanier,et al. The Gauss Hypergeometric Function F(a,b,c,x) , 2008 .
[98] Wolfgang Bühring. An analytic continuation formula for the generalized hypergeometric function , 1988 .
[99] Lloyd N. Trefethen,et al. Parabolic and hyperbolic contours for computing the Bromwich integral , 2007, Math. Comput..
[100] Nico M. Temme,et al. Algorithm 831: Modified Bessel functions of imaginary order and positive argument , 2004, TOMS.
[101] V. Eremenko,et al. Coulomb wave functions in momentum space , 2015, Comput. Phys. Commun..
[102] Olde Daalhuis,et al. Hyperasymptotic solutions of second-order linear differential equations II , 1995 .
[103] Nico M. Temme,et al. Algorithm 914: Parabolic cylinder function W(a, x) and its derivative , 2011, TOMS.
[104] Nico M. Temme,et al. Efficient and Accurate Algorithms for the Computation and Inversion of the Incomplete Gamma Function Ratios , 2012, SIAM J. Sci. Comput..
[105] Nico M. Temme,et al. Asymptotic Methods For Integrals , 2014 .
[106] Adel K. Ibrahim,et al. Contiguous relations and their computations for 2F1 hypergeometric series , 2008, Comput. Math. Appl..
[107] Keith E. Muller,et al. Computing the confluent hypergeometric function, M(a,b,x) , 2001, Numerische Mathematik.
[108] Nico Temme. Uniform asymptotic expansions of a class of integrals in terms of modified Bessel functions with application to confluent hypergeometric functions , 1988 .
[109] Nico M. Temme,et al. New series expansions of the Gauss hypergeometric function , 2013, Adv. Comput. Math..
[110] W. Gautschi. Computational Aspects of Three-Term Recurrence Relations , 1967 .
[111] F. W. J. Olver. Exponentially-improved asymptotic solutions of ordinary differential equations I: the confluent hypergeometric function , 1993 .
[112] William H. Press,et al. Numerical recipes in C. The art of scientific computing , 1987 .
[113] Mark A Beaumont,et al. Detecting and Measuring Selection from Gene Frequency Data , 2013, Genetics.
[114] N. Michel. Precise Coulomb wave functions for a wide range of complex l, eta and z , 2007, Comput. Phys. Commun..
[115] F. W. J. Olver,et al. Uniform, exponentially improved, asymptotic expansions for the generalized exponential integral , 1991 .
[116] Mark Nardin,et al. Numerical evaluation of the confluent hypergeometric function for complex arguments of large magnitudes , 1992 .
[117] J. E. Glynn,et al. Numerical Recipes: The Art of Scientific Computing , 1989 .
[118] José L. López. Asymptotic expansions of the Whittaker functions for large order parameter , 1999 .
[119] Vladimir Rokhlin,et al. A Fast Algorithm for the Calculation of the Roots of Special Functions , 2007, SIAM J. Sci. Comput..
[120] Mihai Gavrila,et al. ELASTIC SCATTERING OF PHOTONS BY A HYDROGEN ATOM. , 1967 .
[121] Chelo Ferreira,et al. The Gauss hypergeometric function F ( a , b ; c ; z ) for large c , 2006 .