Numerical methods for the computation of the confluent and Gauss hypergeometric functions

The two most commonly used hypergeometric functions are the confluent hypergeometric function and the Gauss hypergeometric function. We review the available techniques for accurate, fast, and reliable computation of these two hypergeometric functions in different parameter and variable regimes. The methods that we investigate include Taylor and asymptotic series computations, Gauss–Jacobi quadrature, numerical solution of differential equations, recurrence relations, and others. We discuss the results of numerical experiments used to determine the best methods, in practice, for each parameter and variable regime considered. We provide “roadmaps” with our recommendation for which methods should be used in each situation.

[1]  Walter Gautschi,et al.  A Computational Procedure for Incomplete Gamma Functions , 1979, TOMS.

[2]  L. Trefethen,et al.  Talbot quadratures and rational approximations , 2006 .

[3]  V. Pierro,et al.  Computation of hyperngeometric functions for gravitationally radiating binary stars , 2002 .

[4]  Jet Wimp,et al.  Computation with recurrence relations , 1986 .

[5]  Olga Korotkova,et al.  Scintillation index of a stochastic electromagnetic beam propagating in random media , 2008 .

[6]  Javier Sesma,et al.  Buchholz polynomials: a family of polynomials relating solutions of confluent hypergeometric and Bessel equations , 1999 .

[7]  M. V. Stoitsov,et al.  Fast computation of the Gauss hypergeometric function with all its parameters complex with application to the Pöschl-Teller-Ginocchio potential wave functions , 2007, Comput. Phys. Commun..

[8]  Walter Gautschi,et al.  Gauss quadrature approximations to hypergeometric and confluent hypergeometric functions , 2002 .

[9]  Nico M. Temme,et al.  On modified asymptotic series involving confluent hypergeometric functions , 2009 .

[10]  Milton Abramowitz,et al.  Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables , 1964 .

[11]  Fernando Damian Nieuwveldt A survey of computational methods for pricing Asian options , 2009 .

[12]  F. Olver Asymptotics and Special Functions , 1974 .

[13]  Nico M. Temme,et al.  Numerically satisfactory solutions of hypergeometric recursions , 2007, Math. Comput..

[14]  Cunlu Zhao,et al.  An exact solution for electroosmosis of non-Newtonian fluids in microchannels , 2011 .

[15]  Nico M. Temme,et al.  Algorithm 819: AIZ, BIZ: two Fortran 77 routines for the computation of complex Airy functions , 2002, TOMS.

[16]  A. B. Olde Daalhuis Hyperasymptotic expansions of confluent hypergeometric functions , 1991 .

[17]  Kevin Barraclough,et al.  I and i , 2001, BMJ : British Medical Journal.

[18]  F. W. J. Olver,et al.  The Special Functions and Their Approximations (Vols. I & II Yudell L. Luke) , 1972 .

[19]  José L. López,et al.  The confluent hypergeometric functions M(a, b;z) and U(a, b;z) for large b and z , 2010, J. Comput. Appl. Math..

[20]  W. N. Bailey Confluent Hypergeometric Functions , 1960, Nature.

[21]  P. Schmelcher,et al.  The analytic continuation of the Gaussian hypergeometric function 2 F 1 ( a,b;c;z ) for arbitrary parameters , 2000 .

[22]  S. Kalla,et al.  ON THE EVALUATION OF THE GAUSS HYPERGEOMETRIC FUNCTION , 1992 .

[23]  Yupai P. Hsu DEVELOPMENT OF A GAUSSIAN HYPERGEOMETRIC FUNCTION CODE IN COMPLEX DOMAINS , 1993 .

[24]  T. MacRobert Higher Transcendental Functions , 1955, Nature.

[25]  Michael V Berry,et al.  Asymptotics, Superasymptotics, Hyperasymptotics... , 1991 .

[26]  Xiao Wang,et al.  Numerical methods for the mean exit time and escape probability of two-dimensional stochastic dynamical systems with non-Gaussian noises , 2015, Appl. Math. Comput..

[27]  Yudell L. Luke THE BINOMIAL FUNCTION , 1975 .

[28]  D. S. Jones,et al.  Asymptotics of the hypergeometric function , 2001 .

[29]  William H. Press,et al.  Numerical Recipes 3rd Edition: The Art of Scientific Computing , 2007 .

[30]  James B. Seaborn,et al.  Hypergeometric Functions and Their Applications , 1991 .

[31]  Nico Temme,et al.  The numerical computation of the confluent hypergeometric function u(a,b,z) : (preprint) , 1980 .

[32]  N. Temme Special Functions: An Introduction to the Classical Functions of Mathematical Physics , 1996 .

[33]  Wolfgang Büring An analytic continuation of the hypergeometric series , 1987 .

[34]  Nicholas Hale,et al.  Fast and Accurate Computation of Gauss-Legendre and Gauss-Jacobi Quadrature Nodes and Weights , 2013, SIAM J. Sci. Comput..

[35]  Nico M. Temme,et al.  Numerical methods for special functions , 2007 .

[36]  D. Shanks Non‐linear Transformations of Divergent and Slowly Convergent Sequences , 1955 .

[37]  Nico M. Temme,et al.  The ABC of hyper recursions , 2004 .

[38]  Alessandro Vespignani,et al.  Epidemic dynamics and endemic states in complex networks. , 2001, Physical review. E, Statistical, nonlinear, and soft matter physics.

[39]  Gustavo Gasaneo,et al.  Derivatives of any order of the confluent hypergeometric function F11(a,b,z) with respect to the parameter a or b , 2008 .

[40]  Leon M. Hall,et al.  Special Functions , 1998 .

[41]  G. N. Watson,et al.  The Harmonic Functions Associated with the Parabolic Cylinder , 2022 .

[42]  A V Hershey,et al.  Computation of Special Functions , 1978 .

[43]  Javier Sesma,et al.  Computation of the Regular Confluent Hypergeometric Function , 1995 .

[44]  Stan Wagon,et al.  The SIAM 100-Digit Challenge - A study in High-Accuracy Numerical Computing , 2004, The SIAM 100-Digit Challenge.

[45]  Javier Segura,et al.  Transitory minimal solutions of hypergeometric recursions and pseudoconvergence of associated continued fractions , 2007, Math. Comput..

[46]  Matthew C. Valenti,et al.  The Outage Probability of a Finite Ad Hoc Network in Nakagami Fading , 2012, IEEE Transactions on Communications.

[47]  L. J. Comrie,et al.  Mathematical Tables and Other Aids to Computation. , 1946 .

[48]  Nico M. Temme,et al.  Fast and accurate computation of the Weber parabolic cylinder function W(a, x) , 2011 .

[49]  William H. Press,et al.  Numerical recipes: the art of scientific computing, 3rd Edition , 2007 .

[50]  Nico M. Temme Large parameter cases of the Gauss hypergeometric function , 2002 .

[51]  Richard L. Mace,et al.  A dispersion function for plasmas containing superthermal particles , 1995 .

[52]  Phelim Boyle,et al.  Application of high-precision computing for pricing arithmetic asian options , 2006, ISSAC '06.

[53]  Anatoly Efimov Intuitive model for the scintillations of a partially coherent beam. , 2014, Optics express.

[54]  C. Lanczos,et al.  A Precision Approximation of the Gamma Function , 1964 .

[55]  Walter Gautschi,et al.  NUMERICAL EVALUATION OF SPECIAL FUNCTIONS , 2001 .

[56]  A. Erdélyi,et al.  Higher Transcendental Functions , 1954 .

[57]  Richard J. Mathar Numerical Representations of the Incomplete Gamma Function of Complex-Valued Argument , 2004, Numerical Algorithms.

[58]  Clifford J. Noble,et al.  COULN, a program for evaluating negative energy Coulomb functions , 1984 .

[59]  J. Pearson Computation of Hypergeometric Functions , 2009 .

[60]  Norman Scott,et al.  Coulomb functions (negative energies) , 1984 .

[61]  B. Dwork Generalized Hypergeometric Functions , 1990 .

[62]  N. Temme Uniform asymptotic expansions of confluent hypergeometric functions , 1978 .

[63]  F. W. J. Olver,et al.  Numerical solution of second-order linear difference equations , 1967 .

[64]  J. Spouge Computation of the gamma, digamma, and trigamma functions , 1994 .

[65]  Nico M. Temme,et al.  Numerical and asymptotic aspects of parabolic cylinder functions , 2001, math/0109188.

[66]  Yudell L Luke Algorithms for Rational Approximations for a Confluent Hypergeometric Function II. , 1976 .

[67]  F. W. J. Olver,et al.  On the Asymptotic Solution of Second-Order Differential Equations Having an Irregular Singularity of Rank One, with an Application to Whittaker Functions , 1965 .

[68]  Gene H. Golub,et al.  Calculation of Gauss quadrature rules , 1967, Milestones in Matrix Computation.

[69]  Bernd A. Kniehl,et al.  Finding new relationships between hypergeometric functions by evaluating Feynman integrals , 2011, 1108.6019.

[70]  Yudell L. Luke,et al.  Algorithms for the Computation of Mathematical Functions , 1977 .

[71]  Giampietro Allasia,et al.  Numerical computation of Tricomi's psi function by the trapezoidal rule , 1987, Computing.

[72]  T. M. DUNSTERt ASYMPTOTIC APPROXIMATIONS FOR THE JACOBI AND ULTRASPHERICAL POLYNOMIALS , AND RELATED FUNCTIONS , 2016 .

[73]  F. W. J. Olver,et al.  Whittaker functions with both parameters large: uniform approximations in terms of parabolic cylinder functions , 1980, Proceedings of the Royal Society of Edinburgh: Section A Mathematics.

[74]  Zhi-Wei Huang,et al.  NumExp: Numerical epsilon expansion of hypergeometric functions , 2012, Comput. Phys. Commun..

[75]  A. B. Olde Daalhuis,et al.  UNIFORM ASYMPTOTIC EXPANSIONS FOR HYPERGEOMETRIC FUNCTIONS WITH LARGE PARAMETERS III , 2003 .

[76]  C. Eckart The Penetration of a Potential Barrier by Electrons , 1930 .

[77]  W. A. McConnach,et al.  Uniform , 1963, Definitions.

[78]  Mark Nardin,et al.  Algorithm 707: CONHYP: a numerical evaluator of the confluent hypergeometric function for complex arguments of large magnitudes , 1992, TOMS.

[79]  T. Mark Dunster,et al.  Uniform asymptotic expansions for Whittaker's confluent hypergeometric functions , 1989 .

[80]  Nico M. Temme,et al.  Numerical aspects of special functions , 2007, Acta Numerica.

[81]  Medhat Ahmed Rakha,et al.  Application of basic hypergeometric series , 2004, Appl. Math. Comput..

[82]  Nico M. Temme,et al.  Numerically satisfactory solutions of Kummer recurrence relations , 2008, Numerische Mathematik.

[83]  T. M. Dunsterj UNIFORM ASYMPTOTIC EXPANSIONS FOR WHITI'AKER'S CONFLUENT HYPERGEOMETRIC FUNCTIONS* , 1989 .

[84]  William H. Press,et al.  Numerical Recipes: The Art of Scientific Computing , 1987 .

[85]  Stephen Lloyd Baluk Moshier,et al.  Methods and programs for mathematical functions , 1989 .

[86]  J. A. C. Weideman,et al.  Optimizing Talbot's Contours for the Inversion of the Laplace Transform , 2006, SIAM J. Numer. Anal..

[87]  Arthur J Freeman,et al.  Computation of the Kummer functions and Whittaker functions by using Neumann type series expansions , 1992 .

[88]  C. W. Clenshaw,et al.  The special functions and their approximations , 1972 .

[89]  B. Gabutti,et al.  A new transformation for computing hypergeometric series and the exact evaluation of the transonic adiabatic flow over a smooth bump , 1989 .

[90]  J. Borwein The SIAM 100-Digit challenge: a study in high-accuracy numerical computing , 1987 .

[91]  Lloyd N. Trefethen,et al.  Computing the Gamma Function Using Contour Integrals and Rational Approximations , 2007, SIAM J. Numer. Anal..

[92]  N. M. Temme,et al.  The numerical computation of the confluent hypergeometric functionU(a, b, z) , 1983 .

[93]  Robert C. Forrey,et al.  Computing the Hypergeometric Function , 1997 .

[94]  Karolin Papst,et al.  Functions Of Mathematical Physics , 2016 .

[95]  M. Abramowitz,et al.  Mathematical functions and their approximations , 1975 .

[96]  Kelly Roach,et al.  Hypergeometric function representations , 1996, ISSAC '96.

[97]  Jerome Spanier,et al.  The Gauss Hypergeometric Function F(a,b,c,x) , 2008 .

[98]  Wolfgang Bühring An analytic continuation formula for the generalized hypergeometric function , 1988 .

[99]  Lloyd N. Trefethen,et al.  Parabolic and hyperbolic contours for computing the Bromwich integral , 2007, Math. Comput..

[100]  Nico M. Temme,et al.  Algorithm 831: Modified Bessel functions of imaginary order and positive argument , 2004, TOMS.

[101]  V. Eremenko,et al.  Coulomb wave functions in momentum space , 2015, Comput. Phys. Commun..

[102]  Olde Daalhuis,et al.  Hyperasymptotic solutions of second-order linear differential equations II , 1995 .

[103]  Nico M. Temme,et al.  Algorithm 914: Parabolic cylinder function W(a, x) and its derivative , 2011, TOMS.

[104]  Nico M. Temme,et al.  Efficient and Accurate Algorithms for the Computation and Inversion of the Incomplete Gamma Function Ratios , 2012, SIAM J. Sci. Comput..

[105]  Nico M. Temme,et al.  Asymptotic Methods For Integrals , 2014 .

[106]  Adel K. Ibrahim,et al.  Contiguous relations and their computations for 2F1 hypergeometric series , 2008, Comput. Math. Appl..

[107]  Keith E. Muller,et al.  Computing the confluent hypergeometric function, M(a,b,x) , 2001, Numerische Mathematik.

[108]  Nico Temme Uniform asymptotic expansions of a class of integrals in terms of modified Bessel functions with application to confluent hypergeometric functions , 1988 .

[109]  Nico M. Temme,et al.  New series expansions of the Gauss hypergeometric function , 2013, Adv. Comput. Math..

[110]  W. Gautschi Computational Aspects of Three-Term Recurrence Relations , 1967 .

[111]  F. W. J. Olver Exponentially-improved asymptotic solutions of ordinary differential equations I: the confluent hypergeometric function , 1993 .

[112]  William H. Press,et al.  Numerical recipes in C. The art of scientific computing , 1987 .

[113]  Mark A Beaumont,et al.  Detecting and Measuring Selection from Gene Frequency Data , 2013, Genetics.

[114]  N. Michel Precise Coulomb wave functions for a wide range of complex l, eta and z , 2007, Comput. Phys. Commun..

[115]  F. W. J. Olver,et al.  Uniform, exponentially improved, asymptotic expansions for the generalized exponential integral , 1991 .

[116]  Mark Nardin,et al.  Numerical evaluation of the confluent hypergeometric function for complex arguments of large magnitudes , 1992 .

[117]  J. E. Glynn,et al.  Numerical Recipes: The Art of Scientific Computing , 1989 .

[118]  José L. López Asymptotic expansions of the Whittaker functions for large order parameter , 1999 .

[119]  Vladimir Rokhlin,et al.  A Fast Algorithm for the Calculation of the Roots of Special Functions , 2007, SIAM J. Sci. Comput..

[120]  Mihai Gavrila,et al.  ELASTIC SCATTERING OF PHOTONS BY A HYDROGEN ATOM. , 1967 .

[121]  Chelo Ferreira,et al.  The Gauss hypergeometric function F ( a , b ; c ; z ) for large c , 2006 .