First-principle study on the optical response of phosphorene

[1]  Zhen Zhu,et al.  Phase coexistence and metal-insulator transition in few-layer phosphorene: a computational study. , 2014, Physical review letters.

[2]  Wei Liang,et al.  Progress of nanoscience in China , 2014 .

[3]  N. Dasgupta,et al.  Semiconductor nanowires for photovoltaic and photoelectrochemical energy conversion , 2014 .

[4]  V. Tran,et al.  Scaling laws for the band gap and optical response of phosphorene nanoribbons , 2014, 1404.2247.

[5]  Jun Dai,et al.  Bilayer Phosphorene: Effect of Stacking Order on Bandgap and Its Potential Applications in Thin-Film Solar Cells. , 2014, The journal of physical chemistry letters.

[6]  G. Steele,et al.  Fast and broadband photoresponse of few-layer black phosphorus field-effect transistors. , 2014, Nano letters.

[7]  R. Soklaski,et al.  Layer-Controlled Band Gap and Anisotropic Excitons in Phosphorene , 2014, 1402.4192.

[8]  Yi Cui,et al.  Nanomaterials for electrochemical energy storage , 2014 .

[9]  Eugenie Samuel Reich,et al.  Phosphorene excites materials scientists , 2014, Nature.

[10]  Likai Li,et al.  Black phosphorus field-effect transistors. , 2014, Nature nanotechnology.

[11]  Xianfan Xu,et al.  Phosphorene: an unexplored 2D semiconductor with a high hole mobility. , 2014, ACS nano.

[12]  Binghai Yan,et al.  Large-gap quantum spin Hall insulators in tin films. , 2013, Physical review letters.

[13]  Jing Guo,et al.  Degenerate n-doping of few-layer transition metal dichalcogenides by potassium. , 2013, Nano letters.

[14]  P. Ye,et al.  Channel length scaling of MoS2 MOSFETs. , 2012, ACS nano.

[15]  J. Kong,et al.  Integrated circuits based on bilayer MoS₂ transistors. , 2012, Nano letters.

[16]  Hong Zhang,et al.  Plasmons in graphene nanostructures , 2012 .

[17]  E. Carlson,et al.  Tunable nano Peltier cooling device from geometric effects using a single graphene nanoribbon , 2012, 1208.1912.

[18]  P. Ye,et al.  $\hbox{MoS}_{2}$ Dual-Gate MOSFET With Atomic-Layer-Deposited $\hbox{Al}_{2}\hbox{O}_{3}$ as Top-Gate Dielectric , 2011, IEEE Electron Device Letters.

[19]  Branimir Radisavljevic,et al.  Integrated circuits and logic operations based on single-layer MoS2. , 2011, ACS nano.

[20]  Youngki Yoon,et al.  How good can monolayer MoS₂ transistors be? , 2011, Nano letters.

[21]  F. Koppens,et al.  Graphene plasmonics: a platform for strong light-matter interactions. , 2011, Nano letters.

[22]  F. Xia,et al.  High-frequency, scaled graphene transistors on diamond-like carbon , 2011, Nature.

[23]  A. Radenović,et al.  Single-layer MoS2 transistors. , 2011, Nature nanotechnology.

[24]  Harry A. Atwater,et al.  Low-Loss Plasmonic Metamaterials , 2011, Science.

[25]  Walter R. Duncan,et al.  Regarding the validity of the time-dependent Kohn-Sham approach for electron-nuclear dynamics via trajectory surface hopping. , 2011, The Journal of chemical physics.

[26]  D. J. Mowbray,et al.  Combined experimental and ab initio study of the electronic structure of narrow-diameter single-wall carbon nanotubes with predominant (6,4),(6,5) chirality , 2010 .

[27]  Kang L. Wang,et al.  High-speed graphene transistors with a self-aligned nanowire gate , 2010, Nature.

[28]  J. Shan,et al.  Atomically thin MoS₂: a new direct-gap semiconductor. , 2010, Physical review letters.

[29]  A. Splendiani,et al.  Emerging photoluminescence in monolayer MoS2. , 2010, Nano letters.

[30]  M. Soljavci'c,et al.  Plasmonics in graphene at infrared frequencies , 2009, 0910.2549.

[31]  Nan Zeng,et al.  Linear polarization different imaging and its potential applications , 2008, 2008 Asia Optical Fiber Communication & Optoelectronic Exposition & Conference.

[32]  P. Michler,et al.  Influence of the dark exciton state on the optical and quantum optical properties of single quantum dots. , 2008, Physical review letters.

[33]  A. Rubio-Ponce,et al.  First-principles study of anatase and rutile TiO 2 doped with Eu ions: A comparison of GGA and LDA + U calculations , 2008 .

[34]  R. Nieminen,et al.  Photoabsorption in sodium clusters on the basis of time-dependent density-functional theory. , 2008, The Journal of chemical physics.

[35]  S. Louie,et al.  Enhanced electron-hole interaction and optical absorption in a silicon nanowire , 2007 .

[36]  Harry A Atwater,et al.  The promise of plasmonics , 2007, SIGD.

[37]  E. Ozbay Plasmonics: Merging Photonics and Electronics at Nanoscale Dimensions , 2006, Science.

[38]  P. Kim,et al.  Experimental observation of the quantum Hall effect and Berry's phase in graphene , 2005, Nature.

[39]  A. Geim,et al.  Two-dimensional gas of massless Dirac fermions in graphene , 2005, Nature.

[40]  Angel Rubio,et al.  Optical and loss spectra of carbon nanotubes: depolarization effects and intertube interactions. , 2003, Physical review letters.

[41]  Á. Rubio,et al.  octopus: a first-principles tool for excited electron-ion dynamics. , 2003 .

[42]  Angel Rubio,et al.  Anisotropy and interplane interactions in the dielectric response of graphite. , 2002, Physical review letters.

[43]  E. Knill,et al.  A scheme for efficient quantum computation with linear optics , 2001, Nature.

[44]  Anna Delin,et al.  COHESIVE PROPERTIES OF THE LANTHANIDES : EFFECT OF GENERALIZED GRADIENT CORRECTIONS AND CRYSTAL STRUCTURE , 1998 .

[45]  S. Goedecker,et al.  Relativistic separable dual-space Gaussian pseudopotentials from H to Rn , 1998, cond-mat/9803286.

[46]  George F. Bertsch,et al.  Time-dependent local-density approximation in real time , 1996 .

[47]  Dennis R. Salahub,et al.  Dynamic polarizabilities and excitation spectra from a molecular implementation of time‐dependent density‐functional response theory: N2 as a case study , 1996 .

[48]  Á. Rubio,et al.  Surface plasmon excitations in C60, C60K and C60H clusters , 1993 .

[49]  Xianfan Xu,et al.  Phosphorene: An Unexplored 2D Semiconductor with a High Hole , 2014 .

[50]  Supplementary Figures , 2022 .