Why nitrogen cannot lead to $p$-type conductivity in ZnO

Based on electronic structure and atomic size considerations, nitrogen has been regarded as the most suitable impurity for p-type doping in ZnO. However, numerous experimental efforts by many different groups have not resulted in stable and reproducible p-type material, casting doubt on the efficacy of nitrogen as a shallow acceptor. Based on advanced first-principles calculations we find that nitrogen is actually a deep acceptor, with an exceedingly high ionization energy of 1.3 eV, and hence cannot lead to hole conductivity in ZnO. In light of this result, we reexamine prior experiments on nitrogen doping of ZnO.

[1]  Manfred Albrecht,et al.  Stacking Faults as Quantum Wells for Excitons in Wurtzite GaN , 1997 .

[2]  Pantelides,et al.  First-principles calculations of solubilities and doping limits: Li, Na, and N in ZnSe. , 1993, Physical review. B, Condensed matter.

[3]  O. Sankey,et al.  Deep energy levels of defects in the wurtzite semiconductors AIN, CdS, CdSe, ZnS, and ZnO , 1983 .

[4]  David C. Look,et al.  The Future Of ZnO Light Emitters , 2004 .

[5]  Koji Yano,et al.  Growth of p-type Zinc Oxide Films by Chemical Vapor Deposition , 1997 .

[6]  G. Scuseria,et al.  Hybrid functionals based on a screened Coulomb potential , 2003 .

[7]  Kresse,et al.  Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. , 1996, Physical review. B, Condensed matter.

[8]  J. M. Gaines,et al.  Electrical characterization of p‐type ZnSe:N and Zn1−xMgxSySe1−y:N thin films , 1993 .

[9]  C. Walle,et al.  Hydrogen passivation effect in nitrogen-doped ZnO thin films , 2005 .

[10]  C. Q. Chen,et al.  Luminescence from stacking faults in gallium nitride , 2005 .

[11]  Andreas Waag,et al.  Donor–acceptor pair transitions in ZnO substrate material , 2001 .

[12]  David C. Look,et al.  Local p-type conductivity in n-GaN and n-ZnO layers due to inhomogeneous dopant incorporation , 2006 .

[13]  N. Nickel,et al.  Zinc oxide - a material for micro- and optoelectronic applications , 2005 .

[14]  Burke,et al.  Generalized Gradient Approximation Made Simple. , 1996, Physical review letters.

[15]  S. Jokela,et al.  Defects in ZnO , 2009 .

[16]  Kee-Joo Chang,et al.  Compensation mechanism for N acceptors in ZnO , 2001 .

[17]  H. Ohno,et al.  Repeated temperature modulation epitaxy for p-type doping and light-emitting diode based on ZnO , 2004 .

[18]  M. Schirra,et al.  The role of stacking faults and their associated 0.13 ev acceptor state in doped and undoped ZnO layers and nanostructures , 2009, Microelectron. J..

[19]  W. Harrison Elementary Electronic Structure , 1999 .

[20]  James S. Speck,et al.  Causes of incorrect carrier-type identification in van der Pauw–Hall measurements , 2008 .

[21]  Suhuai Wei,et al.  Origin of p -type doping difficulty in ZnO: The impurity perspective , 2002 .

[22]  David C. Look,et al.  Recent Advances in ZnO Materials and Devices , 2001 .

[23]  Anderson Janotti,et al.  Fundamentals of zinc oxide as a semiconductor , 2009 .

[24]  Christopher M. Rouleau,et al.  p-type ZnSe by nitrogen atom beam doping during molecular beam epitaxial growth , 1990 .

[25]  D. C. Reynolds,et al.  Production of nitrogen acceptors in ZnO by thermal annealing , 2002 .

[26]  T. Kawai,et al.  Fabrication and Optoelectronic Properties of a Transparent ZnO Homostructural Light-Emitting Diode , 2001 .

[27]  D. C. Reynolds,et al.  Characterization of homoepitaxial p-type ZnO grown by molecular beam epitaxy , 2002 .

[28]  G. Kresse,et al.  From ultrasoft pseudopotentials to the projector augmented-wave method , 1999 .

[29]  Gustavo E. Scuseria,et al.  Erratum: “Hybrid functionals based on a screened Coulomb potential” [J. Chem. Phys. 118, 8207 (2003)] , 2006 .

[30]  H. Morkoç,et al.  A COMPREHENSIVE REVIEW OF ZNO MATERIALS AND DEVICES , 2005 .

[31]  Georg Kresse,et al.  Defect energetics in ZnO: A hybrid Hartree-Fock density functional study , 2008 .

[32]  A. Janotti,et al.  Role of Si and Ge as impurities in ZnO , 2009 .