Characterization of a solid optical tissue phantom fabricated by a spin coating method: pilot study

Various optical tissue phantoms (OTP) have been developed and utilized for the performance test of optical device and for in vitro human skin experiments. Solid OTPs have advantages such as semi-permanent use, convenience of experimental use, and easiness of storage. However, it is difficult to fabricate epidermis layer with an extremely thin layer of about few μm thickness. This study suggests a spin coating method to fabricate a thin layer which is similar to epidermis layer thickness of human skin (about 50 μm). By controlling specific parameters such as the concentration of matrix solution and the spin velocity for spin coating, we could design a solid OTP with extremely thin layer of about few μm and a good degree of planarization. Quantitative analysis was performed to evaluate both the spin velocity and the concentration of OTP matrix solution used to control specific thickness of OTP. By using optimal combination of parameters a specific thin layered OTP was fabricated with a thickness of less than 50 μm. In further studies, optimal combination of parameters needs to be studied to fabricate desired thickness of layer, depending on purpose.