Nonlinear stochastic models of 1=f noise and power-law distributions
暂无分享,去创建一个
Vygintas Gontis | Bronislovas Kaulakys | Julius Ruseckas | V. Gontis | B. Kaulakys | M. Alaburda | J. Ruseckas | Miglius Alaburda
[1] Vygintas Gontis,et al. Multiplicative point process as a model of trading activity , 2003, cond-mat/0303089.
[2] Thomas de Quincey. [C] , 2000, The Works of Thomas De Quincey, Vol. 1: Writings, 1799–1820.
[3] D L Gilden,et al. 1/f noise in human cognition. , 1995, Science.
[4] Vygintas Gontis,et al. Modelling financial markets by the multiplicative sequence of trades , 2004, ArXiv.
[5] Peter G. Harrison,et al. Measurement and modelling of self-similar traffic in computer networks , 2004 .
[6] Changshui Zhang,et al. Microscopic model of financial markets based on belief propagation , 2005 .
[7] B Kaulakys,et al. Stochastic nonlinear differential equation generating 1/f noise. , 2004, Physical review. E, Statistical, nonlinear, and soft matter physics.
[8] Miss A.O. Penney. (b) , 1974, The New Yale Book of Quotations.
[9] T. Meskauskas,et al. MODELING 1/F NOISE , 1998 .
[10] Bronislovas Kaulakys,et al. AUTOREGRESSIVE MODEL OF 1 /F NOISE , 1999, adap-org/9907008.
[11] M. Weissman. 1/f noise and other slow, nonexponential kinetics in condensed matter. , 1988 .
[12] S. Swain. Handbook of Stochastic Methods for Physics, Chemistry and the Natural Sciences , 1984 .
[13] Hei Wong,et al. Low-frequency noise study in electron devices: review and update , 2003, Microelectron. Reliab..
[14] C. Gardiner. Handbook of Stochastic Methods , 1983 .
[15] Hans G. Feichtinger,et al. Analysis, Synthesis, and Estimation of Fractal-Rate Stochastic Point Processes , 1997, adap-org/9709006.
[16] B Kaulakys,et al. Point process model of 1/f noise versus a sum of Lorentzians , 2005, Physical review. E, Statistical, nonlinear, and soft matter physics.
[17] Vygintas Gontis,et al. Point Process Models of 1/f Noise and Internet Traffic , 2005, ArXiv.