From finite to linear elastic fracture mechanics by scaling

In the setting of finite elasticity we study the asymptotic behaviour of a crack that propagates quasi-statically in a brittle material. With a natural scaling of size and boundary conditions we prove that for large domains the evolution with finite elasticity converges to the evolution with linearized elasticity. In the proof the crucial step is the (locally uniform) convergence of the non-linear to the linear energy release rate, which follows from the combination of several ingredients: the $$\Gamma $$Γ-convergence of re-scaled energies, the strong convergence of minimizers, the Euler–Lagrange equation for non-linear elasticity and the volume integral representation of the energy release.

[1]  Emanuele Spadaro Non-Uniqueness of Minimizers for Strictly Polyconvex Functionals , 2009 .

[2]  Gilles A. Francfort,et al.  Revisiting brittle fracture as an energy minimization problem , 1998 .

[3]  Z. Bažant,et al.  Scaling of structural strength , 2003 .

[4]  A. Mielke,et al.  On the inviscid limit of a model for crack propagation , 2008 .

[5]  A. Mielke,et al.  Crack growth in polyconvex materials , 2009 .

[6]  A. Mielke,et al.  Energy release rate for cracks in finite‐strain elasticity , 2008 .

[7]  A. Mielke,et al.  On rate-independent hysteresis models , 2004 .

[8]  D. Henao,et al.  Invertibility and Weak Continuity of the Determinant for the Modelling of Cavitation and Fracture in Nonlinear Elasticity , 2010 .

[9]  J. Ball Convexity conditions and existence theorems in nonlinear elasticity , 1976 .

[10]  Malcolm J. Bowman,et al.  Proceedings of the Workshop , 1978 .

[11]  M. Negri A comparative analysis on variational models for quasi-static brittle crack propagation , 2010 .

[12]  James K. Knowles,et al.  An asymptotic finite-deformation analysis of the elastostatic field near the tip of a crack , 1973 .

[13]  F. Theil,et al.  A mathematical model for rate–independent phase transformations with hysteresis∗ , 2011 .

[14]  A. DeSimone,et al.  Linear elasticity obtained from finite elasticity by Γ -convergence under weak coerciveness conditions , 2012 .

[15]  B. Schmidt Linear Γ-limits of multiwell energies in nonlinear elasticity theory , 2008 .

[16]  David Rubin,et al.  Introduction to Continuum Mechanics , 2009 .

[17]  M. Negri,et al.  Linearized Elasticity as Γ-Limit of Finite Elasticity , 2002 .

[18]  G. D. Maso,et al.  Quasistatic Crack Growth in Nonlinear Elasticity , 2005 .

[19]  G. D. Maso,et al.  An Introduction to-convergence , 1993 .

[20]  Robert V. Kohn,et al.  Two–dimensional modelling of soft ferromagnetic films , 2000, Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[21]  Matteo Negri,et al.  QUASI-STATIC CRACK PROPAGATION BY GRIFFITH'S CRITERION , 2008 .

[22]  A. A. Griffith The Phenomena of Rupture and Flow in Solids , 1921 .

[23]  P. G. Ciarlet,et al.  Three-dimensional elasticity , 1988 .

[24]  G. Friesecke,et al.  A theorem on geometric rigidity and the derivation of nonlinear plate theory from three‐dimensional elasticity , 2002 .

[25]  J. Ball Some Open Problems in Elasticity , 2002 .

[26]  Gianni Dal Maso,et al.  An Introduction to [gamma]-convergence , 1993 .

[27]  A. DeSimone,et al.  Hysteresis and imperfection sensitivity in small ferromagnetic particles , 1995 .

[28]  B. Bourdin,et al.  The Variational Approach to Fracture , 2008 .

[29]  G. D. Maso,et al.  Quasistatic crack growth in finite elasticity with non-interpenetration , 2010 .

[30]  Alexander Mielke,et al.  On the Rate-Independent Limit of Systems with Dry Friction and Small Viscosity , 2006 .