The alpha-herpesviruses: molecular pathfinders in nervous system circuits.

[1]  H. Akil,et al.  Distinct populations of presympathetic‐premotor neurons express orexin or melanin‐concentrating hormone in the rat lateral hypothalamus , 2007, The Journal of comparative neurology.

[2]  A. Herbison,et al.  Definition of brainstem afferents to gonadotropin-releasing hormone neurons in the mouse using conditional viral tract tracing. , 2007, Endocrinology.

[3]  O. Wiesel,et al.  Predominance of supraspinal innervation of the left ovary , 2007, Microscopy research and technique.

[4]  B. Roska,et al.  Local Retinal Circuits of Melanopsin-Containing Ganglion Cells Identified by Transsynaptic Viral Tracing , 2007, Current Biology.

[5]  R. Cone,et al.  Role of the central melanocortin circuitry in adaptive thermogenesis of brown adipose tissue. , 2007, Endocrinology.

[6]  A. Zsombok,et al.  Rapid inhibition of neurons in the dorsal motor nucleus of the vagus by leptin. , 2007, Endocrinology.

[7]  The supraspinal innervation of the left adrenal is more intense than that of the right one. , 2007, Ideggyogyaszati szemle.

[8]  Ian R. Wickersham,et al.  Retrograde neuronal tracing with a deletion-mutant rabies virus , 2007, Nature Methods.

[9]  M. Palkovits,et al.  Attenuated pseudorabies virus-evoked rapid innate immune response in the rat brain , 2006, Journal of Neuroimmunology.

[10]  K. Korach,et al.  Definition of Estrogen Receptor Pathway Critical for Estrogen Positive Feedback to Gonadotropin-Releasing Hormone Neurons and Fertility , 2006, Neuron.

[11]  L. Enquist,et al.  Role of Pseudorabies Virus Us3 Protein Kinase during Neuronal Infection , 2006, Journal of Virology.

[12]  B. Klupp,et al.  Chemosensory properties of murine nasal and cutaneous trigeminal neurons identified by viral tracing , 2006, BMC Neuroscience.

[13]  Daniela Hoeller,et al.  Highly efficient regulation of gene expression by tetracycline in a replication-defective herpes simplex viral vector. , 2006, Molecular therapy : the journal of the American Society of Gene Therapy.

[14]  L. Enquist,et al.  Olfactory Inputs to Hypothalamic Neurons Controlling Reproduction and Fertility , 2005, Cell.

[15]  P. Levitt,et al.  Early Experience Modifies the Postnatal Assembly of Autonomic Emotional Motor Circuits in Rats , 2005, The Journal of Neuroscience.

[16]  P. Adelson,et al.  Plastic reorganization of hippocampal and neocortical circuitry in experimental traumatic brain injury in the immature rat. , 2005, Journal of neurotrauma.

[17]  Lisa E. Pomeranz,et al.  Molecular Biology of Pseudorabies Virus: Impact on Neurovirology and Veterinary Medicine , 2005, Microbiology and Molecular Biology Reviews.

[18]  Lynn W Enquist,et al.  New developments in tracing neural circuits with herpesviruses. , 2005, Virus research.

[19]  Z. Janka,et al.  Use of a recombinant pseudorabies virus to analyze motor cortical reorganization after unilateral facial denervation. , 2005, Cerebral cortex.

[20]  K. Looker,et al.  A systematic review of the epidemiology and interaction of herpes simplex virus types 1 and 2 , 2005, Sexually Transmitted Infections.

[21]  Nancy A. Jenkins,et al.  Simple and highly efficient BAC recombineering using galK selection , 2005, Nucleic acids research.

[22]  B. Sagdullaev,et al.  Transsynaptic virus tracing from host brain to subretinal transplants , 2005, The European journal of neuroscience.

[23]  D. Gilden,et al.  A low thymidine kinase-producing mutant of herpes simplex virus type 1 causes latent trigeminal ganglia infections in mice , 2005, Archives of Virology.

[24]  L. Enquist,et al.  Two Modes of Pseudorabies Virus Neuroinvasion and Lethality in Mice , 2004, Journal of Virology.

[25]  P. Spear,et al.  Herpes simplex virus: receptors and ligands for cell entry , 2004, Cellular microbiology.

[26]  L. Enquist,et al.  Suprachiasmatic nucleus input to autonomic circuits identified by retrograde transsynaptic transport of pseudorabies virus from the eye , 2004, The Journal of comparative neurology.

[27]  Miklós Palkovits,et al.  Novel tracing paradigms—genetically engineered herpesviruses as tools for mapping functional circuits within the CNS: present status and future prospects , 2004, Progress in Neurobiology.

[28]  G. Schwartz,et al.  Anterograde Transneuronal Viral Tracing of Central Viscerosensory Pathways in Rats , 2004, The Journal of Neuroscience.

[29]  Lynn W Enquist,et al.  Recent advances in the use of neurotropic viruses for circuit analysis , 2003, Current Opinion in Neurobiology.

[30]  B. Banfield,et al.  Development of Pseudorabies Virus Strains Expressing Red Fluorescent Proteins: New Tools for Multisynaptic Labeling Applications , 2003, Journal of Virology.

[31]  T. Mettenleiter Pathogenesis of neurotropic herpesviruses: role of viral glycoproteins in neuroinvasion and transneuronal spread. , 2003, Virus Research.

[32]  Zsolt Lenkei,et al.  Construction of recombinant pseudorabies viruses optimized for labeling and neurochemical characterization of neural circuitry. , 2002, Brain research. Molecular brain research.

[33]  J. Weir,et al.  Tetracycline-regulated gene expression in replication-incompetent herpes simplex virus vectors. , 2002, Human gene therapy.

[34]  L. Enquist,et al.  In Vivo Egress of an Alphaherpesvirus from Axons , 2002, Journal of Virology.

[35]  L. Enquist,et al.  Intravitreal Injection of the Attenuated Pseudorabies Virus PRV Bartha Results in Infection of the Hamster Suprachiasmatic Nucleus Only by Retrograde Transsynaptic Transport via Autonomic Circuits , 2002, The Journal of Neuroscience.

[36]  J. Friedman,et al.  Virus-Assisted Mapping of Neural Inputs to a Feeding Center in the Hypothalamus , 2001, Science.

[37]  A. Loewy,et al.  Activity of cardiorespiratory networks revealed by transsynaptic virus expressing GFP. , 2001, Journal of neurophysiology.

[38]  G. Aston-Jones,et al.  Use of pseudorabies virus to delineate multisynaptic circuits in brain: opportunities and limitations , 2000, Journal of Neuroscience Methods.

[39]  B. Yates,et al.  Definition of Neuronal Circuitry Controlling the Activity of Phrenic and Abdominal Motoneurons in the Ferret Using Recombinant Strains of Pseudorabies Virus , 2000, The Journal of Neuroscience.

[40]  F. Dudek,et al.  Pseudorabies virus expressing enhanced green fluorescent protein: A tool for in vitro electrophysiological analysis of transsynaptically labeled neurons in identified central nervous system circuits. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[41]  L. Enquist,et al.  A self-recombining bacterial artificial chromosome and its application for analysis of herpesvirus pathogenesis. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[42]  P. Levitt,et al.  Progressive Postnatal Assembly of Limbic–Autonomic Circuits Revealed by Central Transneuronal Transport of Pseudorabies Virus , 2000, The Journal of Neuroscience.

[43]  Lynn W. Enquist,et al.  Circuit-Specific Coinfection of Neurons in the Rat Central Nervous System with Two Pseudorabies Virus Recombinants , 1999, Journal of Virology.

[44]  L. Enquist,et al.  Neuroinvasiveness of pseudorabies virus injected intracerebrally is dependent on viral concentration and terminal field density , 1999, The Journal of comparative neurology.

[45]  A. Loewy,et al.  Viruses as Transneuronal Tracers for Defining Neural Circuits , 1998, Neuroscience & Biobehavioral Reviews.

[46]  L. Enquist,et al.  Different Patterns of Neuronal Infection after Intracerebral Injection of Two Strains of Pseudorabies Virus , 1998, Journal of Virology.

[47]  G. A. Smith,et al.  Infection and spread of alphaherpesviruses in the nervous system. , 1998, Advances in virus research.

[48]  T. Mettenleiter,et al.  Green fluorescent protein expressed by recombinant pseudorabies virus as an in vivo marker for viral replication. , 1997, Journal of virological methods.

[49]  A. Loewy,et al.  Central Command Neurons of the Sympathetic Nervous System: Basis of the Fight-or-Flight Response , 1995, Science.

[50]  L. Enquist,et al.  Dendritic morphology of cardiac related medullary neurons defined by circuit-specific infection by a recombinant pseudorabies virus expressing beta-galactosidase. , 1995, Journal of neurovirology.

[51]  L. Rinaman,et al.  Pseudorabies virus infection of the rat central nervous system: ultrastructural characterization of viral replication, transport, and pathogenesis , 1993, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[52]  J. Card,et al.  Spatiotemporal responses of astrocytes, ramified microglia, and brain macrophages to central neuronal infection with pseudorabies virus , 1993, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[53]  A. Loewy,et al.  β-galactosidase expressing recombinant pseudorabies virus for light and electron microscopic study of transneuronally labeled CNS neurons , 1991, Brain Research.

[54]  L. Enquist,et al.  Two α-herpesvirus strains are transported differentially in the rodent visual system , 1991, Neuron.

[55]  L. Enquist,et al.  Two alpha-herpesvirus strains are transported differentially in the rodent visual system. , 1991, Neuron.

[56]  J. Schwaber,et al.  Neurotropic properties of pseudorabies virus: uptake and transneuronal passage in the rat central nervous system , 1990, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[57]  A. Kaplan,et al.  Genome location and identification of functions defective in the Bartha vaccine strain of pseudorabies virus , 1987, Journal of virology.

[58]  L. Post,et al.  Deletions in vaccine strains of pseudorabies virus and their effect on synthesis of glycoprotein gp63 , 1986, Journal of Virology.

[59]  T. Mettenleiter,et al.  Pseudorabies virus avirulent strains fail to express a major glycoprotein , 1985, Journal of virology.