Predicting Surface Fuel Models and Fuel Metrics Using Lidar and CIR Imagery in a Dense, Mountainous Forest

We compared the ability of several classification and regression algorithms to predict forest stand structure metrics and standard surface fuel models. Our study area spans a dense, topographically complex Sierra Nevada mixed-conifer forest. We used clustering, regression trees, and support vector machine algorithms to analyze high density (average 9 pulses/m 2 ), discrete return, small-footprint lidar data, along with multispectral imagery. Stand structure metric predictions generally decreased with increased canopy penetration. For example, from the top of canopy, we predicted canopy height (r 2 0.87), canopy cover (r 2 0.83), basal area (r 2 0.82), shrub cover (r 2 0.62), shrub height (r 2 0.59), combined fuel loads (r 2 0.48), and fuel bed depth (r 2 0.35). While the general fuel types were predicted accurately, specific surface fuel model predictions were poor (76 percent and 50 percent correct classification, respectively) using all algorithms. These fuel components are critical inputs for wildfire behavior modeling, which ultimately support forest management decisions. This comprehensive examination of the relative utility of lidar and optical imagery will be useful for forest science and management.

[1]  S. Ustin,et al.  Modeling airborne laser scanning data for the spatial generation of critical forest parameters in fire behavior modeling , 2003 .

[2]  Juha Hyyppä,et al.  APPLICABILITY OF FIRST PULSE DERIVED DIGITAL TERRAIN MODELS FOR BOREAL FOREST STUDIES , 2005 .

[3]  H. Anderson Aids to Determining Fuel Models for Estimating Fire Behavior , 1982 .

[4]  Nicholas Skowronski,et al.  Remotely sensed measurements of forest structure and fuel loads in the Pinelands of New Jersey , 2007 .

[5]  M. Finney Design of Regular Landscape Fuel Treatment Patterns for Modifying Fire Growth and Behavior , 2001, Forest Science.

[6]  Miguel G. Cruz,et al.  Assessing crown fire potential in coniferous forests of western North America: a critique of current approaches and recent simulation studies. , 2010 .

[7]  Åsa Persson,et al.  Detecting and measuring individual trees using an airborne laser scanner , 2002 .

[8]  A. Goetz,et al.  Assessing spatial patterns of forest fuel using AVIRIS data , 2006 .

[9]  Shigeo Abe DrEng Pattern Classification , 2001, Springer London.

[10]  Sassan Saatchi,et al.  Estimation of Forest Fuel Load From Radar Remote Sensing , 2007, IEEE Transactions on Geoscience and Remote Sensing.

[11]  David G. Stork,et al.  Pattern Classification , 1973 .

[12]  Demetrios Gatziolis Dynamic Range-based Intensity Normalization for Airborne, Discrete Return Lidar Data of Forest Canopies , 2011 .

[13]  S. Popescu,et al.  Measuring individual tree crown diameter with lidar and assessing its influence on estimating forest volume and biomass , 2003 .

[14]  Mikko Inkinen,et al.  A segmentation-based method to retrieve stem volume estimates from 3-D tree height models produced by laser scanners , 2001, IEEE Trans. Geosci. Remote. Sens..

[15]  Ron Kohavi,et al.  A Study of Cross-Validation and Bootstrap for Accuracy Estimation and Model Selection , 1995, IJCAI.

[16]  Maggi Kelly,et al.  Interactions Among Wildland Fires in a Long-Established Sierra Nevada Natural Fire Area , 2009, Ecosystems.

[17]  M. Flood,et al.  LiDAR remote sensing of forest structure , 2003 .

[18]  Chien-Shun Lo,et al.  A Multi-level Morphological Active Contour Algorithm for Delineating Tree Crowns in Mountainous Forest , 2011 .

[19]  Chih-Jen Lin,et al.  A Practical Guide to Support Vector Classication , 2008 .

[20]  Joanne C. White,et al.  The role of LiDAR in sustainable forest management , 2008 .

[21]  S. Stephens Fire history differences in adjacent Jeffrey pine and upper montane forests in the eastern Sierra Nevada , 2001 .

[22]  S. Stephens,et al.  FEDERAL FOREST‐FIRE POLICY IN THE UNITED STATES , 2005 .

[23]  J. Wagtendonk,et al.  Fuel deposition rates of montane and subalpine conifers in the central Sierra Nevada, California, USA , 2010 .

[24]  Ian H. Witten,et al.  Weka-A Machine Learning Workbench for Data Mining , 2005, Data Mining and Knowledge Discovery Handbook.

[25]  L. Monika Moskal,et al.  Fusion of LiDAR and imagery for estimating forest canopy fuels , 2010 .

[26]  J. W. van Wagtendonk,et al.  Fuel bed characteristics of Sierra Nevada conifers , 1998 .

[27]  W. Cohen,et al.  Surface lidar remote sensing of basal area and biomass in deciduous forests of eastern Maryland, USA , 1999 .

[28]  B. Koch,et al.  Detection of individual tree crowns in airborne lidar data , 2006 .

[29]  Jay D. Miller,et al.  Quantitative Evidence for Increasing Forest Fire Severity in the Sierra Nevada and Southern Cascade Mountains, California and Nevada, USA , 2009, Ecosystems.

[30]  Juha Hyyppä,et al.  An International Comparison of Individual Tree Detection and Extraction Using Airborne Laser Scanning , 2012, Remote. Sens..

[31]  Jessica J. Mitchell,et al.  Small-footprint Lidar Estimations of Sagebrush Canopy Characteristics , 2011 .

[32]  Scott L. Stephens,et al.  Prehistoric fire area and emissions from California's forests, woodlands, shrublands, and grasslands , 2007 .

[33]  W. Cohen,et al.  Lidar remote sensing of above‐ground biomass in three biomes , 2002 .

[34]  S. Reutebuch,et al.  Estimating forest canopy fuel parameters using LIDAR data , 2005 .

[35]  Scott L. Stephens,et al.  Simulating Fire and Forest Dynamics for a Landscape Fuel Treatment Project in the Sierra Nevada , 2011, Forest Science.

[36]  D. Riaño,et al.  Generation of fuel type maps from Landsat TM images and ancillary data in Mediterranean ecosystems , 2002 .

[37]  S. Sathiya Keerthi,et al.  Improvements to Platt's SMO Algorithm for SVM Classifier Design , 2001, Neural Computation.

[38]  Scott L. Stephens,et al.  Fire regimes of mixed conifer forests in the north-central Sierra Nevada at multiple spatial scales , 2004 .

[39]  Scott L. Stephens,et al.  Challenges and Approaches in Planning Fuel Treatments across Fire-Excluded Forested Landscapes , 2010, Journal of Forestry.

[40]  E. Næsset,et al.  Estimation of above- and below-ground biomass across regions of the boreal forest zone using airborne laser , 2008 .

[41]  S. Stephens,et al.  Impacts of fire exclusion and recent managed fire on forest structure in old growth Sierra Nevada mixed-conifer forests , 2011 .

[42]  J. Friedman Stochastic gradient boosting , 2002 .

[43]  Q. Guo,et al.  Effects of Topographic Variability and Lidar Sampling Density on Several DEM Interpolation Methods , 2010 .

[44]  Joe H. Scott,et al.  Standard Fire Behavior Fuel Models: A Comprehensive Set for Use with Rothermel?s Surface Fire Spread Model , 2015 .

[45]  Joe H. Scott,et al.  Assessing Crown Fire Potential by Linking Models of Surface and Crown Fire Behavior , 2003 .

[46]  S. Ustin,et al.  Estimation of shrub height for fuel-type mapping combining airborne LiDAR and simultaneous color infrared ortho imaging , 2007 .

[47]  Jan W. van Wagtendonk,et al.  The use of multi-temporal Landsat Normalized Difference Vegetation Index (NDVI) data for mapping fuel models in Yosemite National Park, USA , 2003 .

[48]  Birgit Peterson Canopy Fuels Inventory and Mapping Using Large-Footprint Lidar , 2005 .

[49]  M. Finney An Overview of FlamMap Fire Modeling Capabilities , 2006 .

[50]  Neil G. Sugihara,et al.  Fire in California's ecosystems , 2006 .

[51]  M. Feldesman,et al.  Classification trees as an alternative to linear discriminant analysis. , 2002, American journal of physical anthropology.

[52]  R. Dubayah,et al.  Use of LIDAR for Forest Inventory and Forest Management Application , 2007 .

[53]  Joe H. Scott,et al.  FuelCalc: A Method for Estimating Fuel Characteristics , 2006 .

[54]  David G. Stork,et al.  Pattern classification, 2nd Edition , 2000 .

[55]  A. Hudak,et al.  Nearest neighbor imputation of species-level, plot-scale forest structure attributes from LiDAR data , 2008 .

[56]  C. Skinner,et al.  Fire regimes, past and present , 1996 .

[57]  Jan W. Van Wagtendonk,et al.  Use of a Deterministic Fire Growth Model to Test Fuel Treatments , 1996 .

[58]  M. Finney FARSITE : Fire Area Simulator : model development and evaluation , 1998 .

[59]  Leo Breiman,et al.  Random Forests , 2001, Machine Learning.

[60]  P. Gong,et al.  Isolating individual trees in a savanna woodland using small footprint lidar data , 2006 .

[61]  S. Popescu,et al.  Seeing the Trees in the Forest: Using Lidar and Multispectral Data Fusion with Local Filtering and Variable Window Size for Estimating Tree Height , 2004 .

[62]  Robert E. Keane,et al.  Development of input data layers for the FARSITE fire growth model for the Selway-Bitterroot Wilderness Complex, USA , 1998 .

[63]  Edward W. Bork,et al.  Influence of Vegetation, Slope, and Lidar Sampling Angle on DEM Accuracy , 2006 .

[64]  W. Wagner,et al.  Accuracy of large-scale canopy heights derived from LiDAR data under operational constraints in a complex alpine environment , 2006 .

[65]  Sorin C. Popescu,et al.  Mapping surface fuel models using lidar and multispectral data fusion for fire behavior , 2008 .

[66]  Robert E. Keane,et al.  Estimating canopy fuel characteristics in five conifer stands in the western United States using tree and stand measurements , 2006 .

[67]  Kurt H. Johnsen,et al.  Process Models as Tools in Forestry Research and Management , 2001, Forest Science.

[68]  Scott L. Stephens,et al.  Fuel treatment effects on modeled landscape- level fire behavior in the northern Sierra Nevada , 2010 .