Exploring the phylogeny of the marattialean ferns

The eusporangiate marattialean ferns represent an ancient radiation with a rich fossil record but limited modern diversity in the tropics. The long evolutionary history without close extant relatives has confounded studies of the phylogenetic origin, rooting and timing of marattialean ferns. Here we present new complete plastid genomes of six marattialean species and compiled a plastid genome dataset representing all of the currently accepted marattialean genera. We further supplemented this dataset by compiling a large dataset of mitochondrial genes and a phenotypic data matrix covering both extant and extinct representatives of the lineage. Our phylogenomic and total‐evidence analyses corroborated the postulated position of marattialean ferns as the sister to leptosporangiate ferns, and the position of Danaea as the sister to the remaining extant marattialean genera. However, our results provide new evidence that Christensenia is sister to Marattia and that M. cicutifolia actually belongs to Eupodium. The apparently highly reduced rate of molecular evolution in marattialean ferns provides a challenge for dating the key phylogenetic events with molecular clock approaches. We instead applied a parsimony‐based total‐evidence dating approach, which suggested a Triassic age for the extant crown group. The modern distribution can best be explained as mainly resulting from vicariance following the breakup of Pangaea and Gondwana. We resolved the fossil genera Marattiopsis, Danaeopsis and Qasimia as members of the monophyletic family Marattiaceae, and the Carboniferous genera Sydneia and Radstockia as the monophyletic sister of all other marattialean ferns.

[1]  A. Lesnikowska Anatomically preserved marattiales from coal swamps of the Desmoinesian and Missourian of the midcontinent United States: Systematics, ecology and evolution , 1989 .

[2]  Uwe Scholz,et al.  MISA-web: a web server for microsatellite prediction , 2017, Bioinform..

[3]  Gao Zhifeng,et al.  A new fern from the Lower Permian of China and its bearing on the evolution of the marattialeans , 1993 .

[4]  S. Lehtonen,et al.  Dynamism in plastome structure observed across the phylogenetic tree of ferns , 2019, Botanical Journal of the Linnean Society.

[5]  C. R. Hill,et al.  PATTERN CLADISTICS OR EVOLUTIONARY CLADISTICS? , 1986, Cladistics : the international journal of the Willi Hennig Society.

[6]  Xiao Sun,et al.  Data access for the 1,000 Plants (1KP) project , 2014, GigaScience.

[7]  J. V. K. Cittert Some notes on Marattia anglica from the Jurassic of Yorkshire , 1975 .

[8]  P. Poczai,et al.  The complete chloroplast genome sequence of the CAM epiphyte Spanish moss (Tillandsia usneoides, Bromeliaceae) and its comparative analysis , 2017, PloS one.

[9]  C. Cleal,et al.  A new late Westphalian fossil marattialean fern from Nova Scotia , 2003 .

[10]  Shougang Hao,et al.  Earliest record of megaphylls and leafy structures, and their initial diversification , 2013 .

[11]  Wang Yufei,et al.  Paleocene Wuyun flora in Northeast China: Woodwardia bureiensis, Dryopteris sp. and Osmunda sachalinensis , 2006 .

[12]  Aaron M. Duffy,et al.  Complete plastome sequences of Equisetum arvense and Isoetes flaccida: implications for phylogeny and plastid genome evolution of early land plant lineages , 2010, BMC Evolutionary Biology.

[13]  N. Matzke Probabilistic historical biogeography: new models for founder-event speciation, imperfect detection, and fossils allow improved accuracy and model-testing , 2013 .

[14]  C. N. Stewart,et al.  The evolutionary history of ferns inferred from 25 low-copy nuclear genes. , 2015, American journal of botany.

[15]  M. Collinson Cainozoic ferns and their distribution , 2001, Brittonia.

[16]  Jeffrey P. Mower,et al.  Mobile Elements Shape Plastome Evolution in Ferns , 2018, Genome biology and evolution.

[17]  H. Falcon-Lang Small cordaitalean trees in a marine-influenced coastal habitat in the Pennsylvanian Joggins Formation, Nova Scotia , 2005, Journal of the Geological Society.

[18]  J. Basinger,et al.  On the fern Pectinangium Li et al., emend. (Marattiales), with spores in situ from the Permian of southern China , 1992 .

[19]  H. Tuomisto,et al.  Environmentally driven extinction and opportunistic origination explain fern diversification patterns , 2017, Scientific Reports.

[20]  E. Zodrow,et al.  Sterile foliage of fertile Sydneia manleyi and synangial chemistry (eusporangiate fern, Late Asturian, Canada): A new subfamily Sydneideae , 2014 .

[21]  M. Millay STUDIES OF PALEOZOIC MARATTIALEANS: THE MORPHOLOGY AND PHYLOGENETIC POSITION OF EOANGIOPTERIS GOODII SP. N. , 1978 .

[22]  Patrick Mardulyn,et al.  NOVOPlasty: de novo assembly of organelle genomes from whole genome data. , 2016, Nucleic acids research.

[23]  J. Der Genomic perspectives on evolution in bracken fern , 2010 .

[24]  Alexandros Stamatakis,et al.  RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies , 2014, Bioinform..

[25]  M. Millay STUDIES OF PALEOZOIC MARATTIALEANS: THE MORPHOLOGY AND PROBABLE AFFINITIES OF TELANGIUM PYGMAEUM GRAHAM' , 1982 .

[26]  A. Mengascini,et al.  Morfología de esporas y sinangios en especies neotropicales del helecho Marattia (Marattiaceae) , 2011 .

[27]  Jeffrey P. Mower,et al.  Variable Frequency of Plastid RNA Editing among Ferns and Repeated Loss of Uridine-to-Cytidine Editing from Vascular Plants , 2015, PloS one.

[28]  C. Cleal The generic taxonomy of Pennsylvanian age marattialean fern frond adpressions , 2015 .

[29]  M. C. Lavalle CARACTERES DIAGNÓSTICOS FOLIARES EN ESPECIES NEOTROPICALES DE MARATTIA SW. (MARATTIACEAE–PTERIDOPHYTA)1 , 2007 .

[30]  A. von Haeseler,et al.  UFBoot2: Improving the Ultrafast Bootstrap Approximation , 2017, bioRxiv.

[31]  Frédéric Delsuc,et al.  MACSE: Multiple Alignment of Coding SEquences Accounting for Frameshifts and Stop Codons , 2011, PloS one.

[32]  B. Bomfleur,et al.  The fossil Osmundales (Royal Ferns)—a phylogenetic network analysis, revised taxonomy, and evolutionary classification of anatomically preserved trunks and rhizomes , 2017, PeerJ.

[33]  Stephen McLoughlin,et al.  Fossilized Nuclei and Chromosomes Reveal 180 Million Years of Genomic Stasis in Royal Ferns , 2014, Science.

[34]  Min Wang,et al.  Rates of morphological evolution are heterogeneous in Early Cretaceous birds , 2016, Proceedings of the Royal Society B: Biological Sciences.

[35]  Saravanaraj N. Ayyampalayam,et al.  Phylotranscriptomic analysis of the origin and early diversification of land plants , 2014, Proceedings of the National Academy of Sciences.

[36]  S. Mamay Some American Carboniferous Fern Fructifications , 1950 .

[37]  P. Goloboff Extended implied weighting , 2014, Cladistics : the international journal of the Willi Hennig Society.

[38]  G. Rothwell,et al.  Todea from the Lower Cretaceous of western North America: implications for the phylogeny, systematics, and evolution of modern Osmundaceae. , 2008, American journal of botany.

[39]  Daniel L. Ayres,et al.  Bayesian phylogenetic and phylodynamic data integration using BEAST 1.10 , 2018, Virus evolution.

[40]  E. Birney,et al.  Velvet: algorithms for de novo short read assembly using de Bruijn graphs. , 2008, Genome research.

[41]  W. Jokat,et al.  Timing and geometry of early Gondwana breakup , 2003 .

[42]  G. Rothwell,et al.  Osmunda cinnamomea (Osmundaceae) in the Upper Cretaceous of Western North America: Additional Evidence for Exceptional Species Longevity among Filicalean Ferns , 1999, International Journal of Plant Sciences.

[43]  G. Mapes,et al.  MILLAYA GEN. N., AN UPPER PALEOZOIC GENUS OF MARATTIALEAN SYNANGIA' , 1979 .

[44]  J. Kvaček Marattiopsis vodrazkae sp. nov. (Marattiaceae) from the Campanian of the Hidden Lake Formation, James Ross Island, Antarctica , 2014 .

[45]  J. Webb A new marattialean fern from the Middle Triassic of eastern Australia , 2001 .

[46]  K. G. Karol,et al.  Plastome sequences of an ancient fern lineage reveal remarkable changes in gene content and architecture. , 2017, American journal of botany.

[47]  James W. Clark,et al.  Are the genomes of royal ferns really frozen in time? Evidence for coinciding genome stability and limited evolvability in the royal ferns. , 2015, The New phytologist.

[48]  Tanja Gernhard,et al.  The conditioned reconstructed process. , 2008, Journal of theoretical biology.

[49]  C. Miller Evolution of the Fern Family Osmundaceae Based on Anatomical Studies , 1971 .

[50]  K. Pryer,et al.  Incongruence between primary sequence data and the distribution of a mitochondrial atp1 group II intron among ferns and horsetails. , 2005, Molecular phylogenetics and evolution.

[51]  Hongmei Liu,et al.  Towards the conservation of the Mesozoic relict fern Christensenia: a fern species with extremely small populations in China , 2019, Journal of Plant Research.

[52]  A. Murdock A taxonomic revision of the eusporangiate fern family Marattiaceae, with description of a new genus Ptisana , 2008 .

[53]  J. Bergsten A review of long‐branch attraction , 2005, Cladistics : the international journal of the Willi Hennig Society.

[54]  Wilson N. Stewart Paleobotany and the Evolution of Plants , 1983 .

[55]  M. Siddall Stratigraphic Fit to Phylogenies: A Proposed Solution , 1998 .

[56]  B. Bomfleur,et al.  A new marattiaceous fern from the Lower Jurassic of Patagonia (Argentina): the renaissance of Marattiopsis , 2015 .

[57]  M. Christenhusz,et al.  Revision of the fern family Marattiaceae in the Seychelles with two new species and a discussion of the African Ptisana fraxinea complex , 2014 .

[58]  Michael A. Sundue,et al.  A 4000-species dataset provides new insight into the evolution of ferns. , 2016, Molecular phylogenetics and evolution.

[59]  De‐Zhu Li,et al.  Chloroplast phylogenomics resolves key relationships in ferns , 2015 .

[60]  K. Pryer,et al.  ABRUPT DECELERATION OF MOLECULAR EVOLUTION LINKED TO THE ORIGIN OF ARBORESCENCE IN FERNS , 2010, Evolution; international journal of organic evolution.

[61]  Jeffrey P. Mower,et al.  Evolutionary dynamics of the plastid inverted repeat: the effects of expansion, contraction, and loss on substitution rates. , 2016, The New phytologist.

[62]  Luo Shugang,et al.  Phylogeny and divergence of Chinese Angiopteridaceae based on chloroplast DNA sequence data (rbcL and trnL-F) , 2007 .

[63]  M. Siddall Stratigraphic Consistency and the Shape of Things , 1996 .

[64]  M. Norell,et al.  Comments on the Manhattan Stratigraphic Measure , 2001 .

[65]  R. Rohn,et al.  Petrified Marattiales pinnae from the Lower Permian of North-Western Gondwana (Parnaíba Basin, Brazil) , 2014 .

[66]  C. Cleal,et al.  Taxonomic revision of the Palaeozoic marattialean fern Acitheca Schimper , 2006 .

[67]  C. R. Hill Jurassic Angiopteris (Marattiales) from North Yorkshire , 1987 .

[68]  Richard H. Ree,et al.  Maximum likelihood inference of geographic range evolution by dispersal, local extinction, and cladogenesis. , 2008, Systematic biology.

[69]  G. Sablok,et al.  Sequencing the Plastid Genome of Giant Ragweed (Ambrosia trifida, Asteraceae) From a Herbarium Specimen , 2019, Front. Plant Sci..

[70]  V. Krassilov,et al.  Cenomanian florule of Nammoura, Lebanon , 2000 .

[71]  Aaron R. Quinlan,et al.  Bioinformatics Applications Note Genome Analysis Bedtools: a Flexible Suite of Utilities for Comparing Genomic Features , 2022 .

[72]  Y. Hu,et al.  A well-resolved fern nuclear phylogeny reveals the evolution history of numerous transcription factor families. , 2018, Molecular phylogenetics and evolution.

[73]  M. Laurin The evolution of body size, Cope's rule and the origin of amniotes. , 2004, Systematic biology.

[74]  M. Donoghue,et al.  An uncorrelated relaxed-clock analysis suggests an earlier origin for flowering plants , 2010, Proceedings of the National Academy of Sciences.

[75]  Michael S. Barker,et al.  Fern genomes elucidate land plant evolution and cyanobacterial symbioses , 2018, Nature Plants.

[76]  M. Christenhusz Evolutionary History and Taxonomy of Neotropical Marattioid Ferns: Studies of an Ancient Lineage of Plants , 2007 .

[77]  W. P. Schimper Traité de paléontologie végétale ou la flore du monde primitif dans ses rapports avec les formations géologiques et la flore du monde actuel , 1869 .

[78]  W. DiMichele,et al.  The ecology of Paleozoic ferns , 2002 .

[79]  Ki-Joong Kim,et al.  Evolution of six novel ORFs in the plastome of Mankyua chejuense and phylogeny of eusporangiate ferns , 2018, Scientific Reports.

[80]  Jeffrey P. Mower,et al.  Complete plastid genomes from Ophioglossum californicum, Psilotum nudum, and Equisetum hyemale reveal an ancestral land plant genome structure and resolve the position of Equisetales among monilophytes , 2013, BMC Evolutionary Biology.

[81]  K. Pryer,et al.  Phylogenetic relationships of extant ferns based on evidence from morphology and rbcL sequences , 1995 .

[82]  Bengt Oxelman,et al.  Improvements to resampling measures of group support , 2003 .

[83]  Thomas K. F. Wong,et al.  ModelFinder: Fast Model Selection for Accurate Phylogenetic Estimates , 2017, Nature Methods.

[84]  Chung-Shien Wu,et al.  Chloroplast genome (cpDNA) of Cycas taitungensis and 56 cp protein-coding genes of Gnetum parvifolium: insights into cpDNA evolution and phylogeny of extant seed plants. , 2007, Molecular biology and evolution.

[85]  D. Cook,et al.  ggbio: an R package for extending the grammar of graphics for genomic data , 2012, Genome Biology.

[86]  C. R. Hill,et al.  Evolutionary cladistics of Marattialean ferns , 1986 .

[87]  Robert Lanfear,et al.  PartitionFinder 2: New Methods for Selecting Partitioned Models of Evolution for Molecular and Morphological Phylogenetic Analyses. , 2016, Molecular biology and evolution.

[88]  H. P. Banks,et al.  IBYKA AMPHIKOMA, GEN. ET SP. N., A NEW PROTOARTICULATE PRECURSOR FROM THE LATE MIDDLE DEVONIAN OF NEW YORK STATE , 1973 .

[89]  Gonzalo Giribet,et al.  Dynamic homology and phylogenetic systematics: a unified approach using POY , 2006 .

[90]  J. Galtier,et al.  Permineralized Marattiales from the Stephanian and Autunian of central France: a reinvestigation of Grandeuryella renaultii (Stur) Weiss emend , 1992 .

[91]  Matthew W. Pennell,et al.  The choice of tree prior and molecular clock does not substantially affect phylogenetic inferences of diversification rates , 2018, bioRxiv.

[92]  Robert S. Harris,et al.  Improved pairwise alignment of genomic dna , 2007 .

[93]  R. Roessler,et al.  First Grammatopteris tree ferns from the Southern Hemisphere – new insights in the evolution of the Osmundaceae from the Permian of Brazil , 2002 .

[94]  Hong Ma,et al.  Order-level fern plastome phylogenomics: new insights from Hymenophyllales. , 2018, American journal of botany.

[95]  S. Nazir,et al.  Chloroplast-encoded chlB gene from Pinus thunbergii promotes root and early chlorophyll pigment development in Nicotiana tabaccum , 2012, Molecular Biology Reports.

[96]  H. Schneider,et al.  Is Morphology Really at Odds with Molecules in Estimating Fern Phylogeny? , 2009 .

[97]  M. Hasebe,et al.  Complete nucleotide sequence of the chloroplast genome from a leptosporangiate fern, Adiantum capillus-veneris L. , 2003, DNA research : an international journal for rapid publication of reports on genes and genomes.

[98]  S. Salzberg,et al.  Versatile and open software for comparing large genomes , 2004, Genome Biology.

[99]  J. B. Davidson,et al.  The evolution of chloroplast genes and genomes in ferns , 2011, Plant Molecular Biology.

[100]  Paul G. Wolf,et al.  Horsetails and ferns are a monophyletic group and the closest living relatives to seed plants , 2001, Nature.

[101]  R. Ro First Grammatopteris tree ferns from the Southern Hemisphere ^ new insights in the evolution of the Osmundaceae from the Permian of Brazil , 2002 .

[102]  One Thousand Plant Transcriptomes Initiative One thousand plant transcriptomes and the phylogenomics of green plants , 2019 .

[103]  C. Hillenbrand,et al.  Widespread Antarctic glaciation during the Late Eocene , 2017 .

[104]  P. Goloboff,et al.  Morphological Data Sets Fit a Common Mechanism Much More Poorly than DNA Sequences and Call Into Question the Mkv Model , 2018, Systematic biology.

[105]  Bo Wang,et al.  Plastome Sequences of Lygodium japonicum and Marsilea crenata Reveal the Genome Organization Transformation from Basal Ferns to Core Leptosporangiates , 2013, Genome biology and evolution.

[106]  J. Walker GSA Geologic Time Scale v. 5.0 , 2019 .

[107]  J. Galtier,et al.  Studies of Paleozoic marattialean ferns : Scolecopteris globiforma n.sp., from the Stephanian of France , 1990 .

[108]  G. Mapes,et al.  A new species of Acitheca (Marattiales) from the Middle Pennsylvanian of Oklahoma , 1979 .

[109]  M. Chase,et al.  Trends and concepts in fern classification. , 2014, Annals of botany.

[110]  R. Varshney,et al.  Exploiting EST databases for the development and characterization of gene-derived SSR-markers in barley (Hordeum vulgare L.) , 2003, Theoretical and Applied Genetics.

[111]  K. Fitzhugh The ‘requirement of total evidence’ and its role in phylogenetic systematics , 2006 .

[112]  M. Millay ACAULANGIUM GEN. N., A FERTILE MARATTIALEAN FROM THE UPPER PENNSYLVANIAN OF ILLINOIS , 1977 .

[113]  K. Pryer,et al.  Fern phylogeny inferred from 400 leptosporangiate species and three plastid genes , 2007 .

[114]  C. Rolleri Revision of the genus Christensenia , 1993 .

[115]  Jun Wang,et al.  Chansitheca wudaensis (Gleicheniaceae, fern) from the early Permian Wuda Tuff Flora, Inner Mongolia , 2016 .

[116]  Seraina Klopfstein,et al.  A Total-Evidence Approach to Dating with Fossils, Applied to the Early Radiation of the Hymenoptera , 2012, Systematic biology.

[117]  J. V. K. Cittert Palaeobotany of the Mesophytic II. New and noteworthy jurassic ferns from Yorkshire , 1966 .

[118]  Gonçalo R. Abecasis,et al.  The Sequence Alignment/Map format and SAMtools , 2009, Bioinform..

[119]  G. Rothwell,et al.  Resolving the overall pattern of marattialean fern phylogeny. , 2018, American journal of botany.

[120]  Pamela S Soltis,et al.  Plastid phylogenomic analysis of green plants: A billion years of evolutionary history. , 2018, American journal of botany.

[121]  C. Scotese PALEOMAP PALEOATLAS FOR GPLATES AND THE PALEODATAPLOTTER PROGRAM , 2016 .

[122]  Liu,et al.  Zhutheca Liu, Li et Hilton gen. nov., the fertile pinnules of Fascipteris densata Gu et Zhi and their significance in marattialean evolution. , 2000, Review of palaeobotany and palynology.

[123]  P. Goloboff,et al.  TNT version 1.5, including a full implementation of phylogenetic morphometrics , 2016, Cladistics : the international journal of the Willi Hennig Society.

[124]  M. Suchard,et al.  Bayesian random local clocks, or one rate to rule them all , 2010, BMC Biology.

[125]  M. Millay A review of permineralized Euramerican Carboniferous tree ferns , 1997 .

[126]  Graeme T. Lloyd,et al.  Probabilistic divergence time estimation without branch lengths: dating the origins of dinosaurs, avian flight and crown birds , 2016, Biology Letters.

[127]  Shusheng Hu,et al.  A new marsilealean fern species from the Early Cretaceous of Jordan , 2008 .

[128]  H. Tuomisto,et al.  Evolutionary relationships within the Neotropical, eusporangiate fern genus Danaea (Marattiaceae). , 2008, Molecular phylogenetics and evolution.

[129]  Sara P. Stubblefield Taxonomic delimitation among Pennsylvanian marattialian fructifications , 1984 .

[130]  A. Murdock Phylogeny of marattioid ferns (Marattiaceae): inferring a root in the absence of a closely related outgroup. , 2008, American journal of botany.

[131]  T. Taylor On the structure and phylogenetic relationships of the fern Radstockia Kidston , 1967 .

[132]  Robert K. Jansen,et al.  Automatic annotation of organellar genomes with DOGMA , 2004, Bioinform..

[133]  M. Laurin,et al.  Fossils, molecules, divergence times, and the origin of lissamphibians. , 2007, Systematic biology.

[134]  R. Schmid,et al.  The Families and Genera of Vascular Plants. Vol. 1. Pteridophytes and Gymnosperms , 1991 .

[135]  A. von Haeseler,et al.  IQ-TREE: A Fast and Effective Stochastic Algorithm for Estimating Maximum-Likelihood Phylogenies , 2014, Molecular biology and evolution.

[136]  P. Gerrienne,et al.  A Namurian A (Silesian) permineralized flora from the Carrière du Lion at Engihoul (Belgium) , 1999 .

[137]  B. M. Stidd EVOLUTIONARY TRENDS IN THE MARATTIALES , 1974 .

[138]  P. Lewis A likelihood approach to estimating phylogeny from discrete morphological character data. , 2001, Systematic biology.

[139]  Gaurav Vaidya,et al.  SequenceMatrix: concatenation software for the fast assembly of multi‐gene datasets with character set and codon information , 2011, Cladistics : the international journal of the Willi Hennig Society.

[140]  E. Taylor,et al.  Osmunda (Osmundaceae) from the Triassic of Antarctica: an example of evolutionary stasis. , 1998, American journal of botany.

[141]  Ting Wang,et al.  Evolution of the rpoB-psbZ region in fern plastid genomes: notable structural rearrangements and highly variable intergenic spacers , 2011, BMC Plant Biology.

[142]  Xun Xu,et al.  One thousand plant transcriptomes and the phylogenomics of green plants , 2019, Nature.

[143]  S. N. Césari,et al.  Marattiaceae synangia from the Lower Cretaceous of Antarctica , 2016 .

[144]  Ting Wang,et al.  Complete chloroplast genome sequence of a tree fern Alsophila spinulosa: insights into evolutionary changes in fern chloroplast genomes , 2009, BMC Evolutionary Biology.

[145]  C. Rothfels,et al.  Accelerated rate of molecular evolution for vittarioid ferns is strong and not driven by selection. , 2014, Systematic biology.

[146]  C. R. Hill,et al.  Gemellitheca gen. nov., a fertile pecopterid fern from the Upper Permian of the Middle East , 1985 .

[147]  C. R. Hill,et al.  Qasimia gen. nov., an early Marattia-like fern from the Permian of Saudi Arabia , 1985 .

[148]  Aaron M. Duffy,et al.  The evolution of chloroplast genome structure in ferns. , 2010, Genome.

[149]  O. Gascuel,et al.  New algorithms and methods to estimate maximum-likelihood phylogenies: assessing the performance of PhyML 3.0. , 2010, Systematic biology.

[150]  E. Kustatscher,et al.  Danaeopsis Heer ex Schimper 1869 and its European Triassic species , 2012 .

[151]  A. Pyron,et al.  Divergence time estimation using fossils as terminal taxa and the origins of Lissamphibia. , 2011, Systematic biology.

[152]  G. Rothwell Fossils and ferns in the resolution of land plant phylogeny , 1999, The Botanical Review.

[153]  T. Taylor,et al.  A marattialean fern from the Triassic of Antarctica , 1992 .

[154]  D. R. Farrar,et al.  A community‐derived classification for extant lycophytes and ferns , 2016 .

[155]  Ki-Joong Kim,et al.  Chloroplast Genome Evolution in Early Diverged Leptosporangiate Ferns , 2014, Molecules and cells.

[156]  Felix Grewe,et al.  Horsetails are the sister group to all other monilophytes and Marattiales are sister to leptosporangiate ferns. , 2015, Molecular phylogenetics and evolution.

[157]  Steven J. M. Jones,et al.  Circos: an information aesthetic for comparative genomics. , 2009, Genome research.

[158]  R. Lanfear,et al.  Partitionfinder: combined selection of partitioning schemes and substitution models for phylogenetic analyses. , 2012, Molecular biology and evolution.

[159]  B. Bomfleur,et al.  Using more than the oldest fossils: dating osmundaceae with three Bayesian clock approaches. , 2015, Systematic biology.

[160]  Pamela S Soltis,et al.  Rate heterogeneity among lineages of tracheophytes: Integration of molecular and fossil data and evidence for molecular living fossils , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[161]  J. Sharpe Plant growth and demography of the neotropical herbaceous fern Danaea wendlandii (Marattiaceae) in a Costa Rican rain forest , 1993 .

[162]  E. Myers,et al.  Basic local alignment search tool. , 1990, Journal of molecular biology.

[163]  Cheng-Sen Li,et al.  Fertile pinnules of Danaeites rigida Gu and Zhi (Marattiales) from the Upper Permian of south China , 2001 .

[164]  Alexei J. Drummond,et al.  Calibrated Tree Priors for Relaxed Phylogenetics and Divergence Time Estimation , 2011, Systematic biology.

[165]  H. Tuomisto,et al.  Prodromus of a fern flora for Bolivia. VIII. Marattiaceae , 2018 .

[166]  Jeffrey P. Mower,et al.  Complete mitochondrial genomes from the ferns Ophioglossum californicum and Psilotum nudum are highly repetitive with the largest organellar introns. , 2017, The New phytologist.

[167]  W. DiMichele,et al.  Stratigraphic and interregional changes in Pennsylvanian coal-swamp vegetation: Environmental inferences , 1985 .

[168]  P. Goloboff Analyzing Large Data Sets in Reasonable Times: Solutions for Composite Optima , 1999, Cladistics : the international journal of the Willi Hennig Society.

[169]  Maxim Teslenko,et al.  MrBayes 3.2: Efficient Bayesian Phylogenetic Inference and Model Choice Across a Large Model Space , 2012, Systematic biology.

[170]  L. Shao,et al.  The anatomically preserved stem Zhongmingella gen. nov. from the Upper Permian of China: evaluating the early evolution and phylogeny of the Osmundales , 2014 .

[171]  M. Logacheva,et al.  Comparative analysis of inverted repeats of polypod fern (Polypodiales) plastomes reveals two hypervariable regions , 2017, BMC Plant Biology.

[172]  D. Pol,et al.  Incorporating phylogenetic uncertainty on phylogeny‐based palaeontological dating and the timing of turtle diversification , 2013, Cladistics : the international journal of the Willi Hennig Society.

[173]  J. Boore,et al.  The Complete Plastid Genome Sequence of Angiopteris evecta (G. Forst.) Hoffm. (Marattiaceae) , 2007 .

[174]  M. Crisp,et al.  Clock model makes a large difference to age estimates of long-stemmed clades with no internal calibration: a test using Australian grasstrees , 2014, BMC Evolutionary Biology.

[175]  P. Poczai,et al.  Discovery of novel plastid phenylalanine (trnF) pseudogenes defines a distinctive clade in Solanaceae , 2013, SpringerPlus.

[176]  Mark A. Miller,et al.  Creating the CIPRES Science Gateway for inference of large phylogenetic trees , 2010, 2010 Gateway Computing Environments Workshop (GCE).

[177]  Jun Wang,et al.  Marattia aganzhenensis sp. nov. from the Lower Jurassic Daxigou Formation of Lanzhou, Gansu, China , 2008, International Journal of Plant Sciences.

[178]  Wen-Bin Yu,et al.  GetOrganelle: a fast and versatile toolkit for accurate de novo assembly of organelle genomes , 2018, Genome Biology.

[179]  M. C. Lavalle Taxonomía de las especies neotropicales de Marattia (Marattiaceae) , 2003 .

[180]  Toni Gabaldón,et al.  trimAl: a tool for automated alignment trimming in large-scale phylogenetic analyses , 2009, Bioinform..

[181]  Yongdong Wang,et al.  Fertile organs and in situ spores of Marattia asiatica (Kawasaki) Harris (Marattiales) from the Lower Jurassic Hsiangchi Formation in Hubei, China , 1999 .

[182]  J. Vogel,et al.  Schizaeaceae: a phylogenetic approach , 2002 .

[183]  Aaron M. Duffy,et al.  Conservation of selection on matK following an ancient loss of its flanking intron. , 2009, Gene.

[184]  J. Galtier,et al.  A reconsideration of four genera of permineralized Marattiales from the Stephanian and Autunian of France , 1991 .

[185]  M. Norell,et al.  Measures of stratigraphic fit to phylogeny and their sensitivity to tree size, tree shape, and scale , 2004 .

[186]  M. Christenhusz Revision of the Neotropical fern genus Eupodium (Marattiaceae) , 2010, Kew bulletin.

[187]  S. Lehtonen Towards Resolving the Complete Fern Tree of Life , 2011, PloS one.

[188]  K. Nixon,et al.  How Does the Inclusion of Fossil Data Change Our Conclusions about the Phylogenetic History of Euphyllophytes? , 2006, International Journal of Plant Sciences.

[189]  Yuehong Yan,et al.  Large-scale phylogenomic analysis resolves a backbone phylogeny in ferns , 2017, GigaScience.

[190]  Characterization of the complete chloroplast genome of Cycas panzhihuaensis , 2017, Conservation Genetics Resources.

[191]  P. Poczai,et al.  The chloroplast genome sequence of bittersweet (Solanum dulcamara): Plastid genome structure evolution in Solanaceae , 2018, PloS one.

[192]  C. Rothfels,et al.  Genes Translocated into the Plastid Inverted Repeat Show Decelerated Substitution Rates and Elevated GC Content , 2016, Genome biology and evolution.