Exploring the phylogeny of the marattialean ferns
暂无分享,去创建一个
Jaakko Hyvönen | Gaurav Sablok | Samuli Lehtonen | Péter Poczai | Dirk N. Karger | Jorge Flores | G. Sablok | D. Karger | P. Poczai | J. Hyvönen | S. Lehtonen | J. Flores
[1] A. Lesnikowska. Anatomically preserved marattiales from coal swamps of the Desmoinesian and Missourian of the midcontinent United States: Systematics, ecology and evolution , 1989 .
[2] Uwe Scholz,et al. MISA-web: a web server for microsatellite prediction , 2017, Bioinform..
[3] Gao Zhifeng,et al. A new fern from the Lower Permian of China and its bearing on the evolution of the marattialeans , 1993 .
[4] S. Lehtonen,et al. Dynamism in plastome structure observed across the phylogenetic tree of ferns , 2019, Botanical Journal of the Linnean Society.
[5] C. R. Hill,et al. PATTERN CLADISTICS OR EVOLUTIONARY CLADISTICS? , 1986, Cladistics : the international journal of the Willi Hennig Society.
[6] Xiao Sun,et al. Data access for the 1,000 Plants (1KP) project , 2014, GigaScience.
[7] J. V. K. Cittert. Some notes on Marattia anglica from the Jurassic of Yorkshire , 1975 .
[8] P. Poczai,et al. The complete chloroplast genome sequence of the CAM epiphyte Spanish moss (Tillandsia usneoides, Bromeliaceae) and its comparative analysis , 2017, PloS one.
[9] C. Cleal,et al. A new late Westphalian fossil marattialean fern from Nova Scotia , 2003 .
[10] Shougang Hao,et al. Earliest record of megaphylls and leafy structures, and their initial diversification , 2013 .
[11] Wang Yufei,et al. Paleocene Wuyun flora in Northeast China: Woodwardia bureiensis, Dryopteris sp. and Osmunda sachalinensis , 2006 .
[12] Aaron M. Duffy,et al. Complete plastome sequences of Equisetum arvense and Isoetes flaccida: implications for phylogeny and plastid genome evolution of early land plant lineages , 2010, BMC Evolutionary Biology.
[13] N. Matzke. Probabilistic historical biogeography: new models for founder-event speciation, imperfect detection, and fossils allow improved accuracy and model-testing , 2013 .
[14] C. N. Stewart,et al. The evolutionary history of ferns inferred from 25 low-copy nuclear genes. , 2015, American journal of botany.
[15] M. Collinson. Cainozoic ferns and their distribution , 2001, Brittonia.
[16] Jeffrey P. Mower,et al. Mobile Elements Shape Plastome Evolution in Ferns , 2018, Genome biology and evolution.
[17] H. Falcon-Lang. Small cordaitalean trees in a marine-influenced coastal habitat in the Pennsylvanian Joggins Formation, Nova Scotia , 2005, Journal of the Geological Society.
[18] J. Basinger,et al. On the fern Pectinangium Li et al., emend. (Marattiales), with spores in situ from the Permian of southern China , 1992 .
[19] H. Tuomisto,et al. Environmentally driven extinction and opportunistic origination explain fern diversification patterns , 2017, Scientific Reports.
[20] E. Zodrow,et al. Sterile foliage of fertile Sydneia manleyi and synangial chemistry (eusporangiate fern, Late Asturian, Canada): A new subfamily Sydneideae , 2014 .
[21] M. Millay. STUDIES OF PALEOZOIC MARATTIALEANS: THE MORPHOLOGY AND PHYLOGENETIC POSITION OF EOANGIOPTERIS GOODII SP. N. , 1978 .
[22] Patrick Mardulyn,et al. NOVOPlasty: de novo assembly of organelle genomes from whole genome data. , 2016, Nucleic acids research.
[23] J. Der. Genomic perspectives on evolution in bracken fern , 2010 .
[24] Alexandros Stamatakis,et al. RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies , 2014, Bioinform..
[25] M. Millay. STUDIES OF PALEOZOIC MARATTIALEANS: THE MORPHOLOGY AND PROBABLE AFFINITIES OF TELANGIUM PYGMAEUM GRAHAM' , 1982 .
[26] A. Mengascini,et al. Morfología de esporas y sinangios en especies neotropicales del helecho Marattia (Marattiaceae) , 2011 .
[27] Jeffrey P. Mower,et al. Variable Frequency of Plastid RNA Editing among Ferns and Repeated Loss of Uridine-to-Cytidine Editing from Vascular Plants , 2015, PloS one.
[28] C. Cleal. The generic taxonomy of Pennsylvanian age marattialean fern frond adpressions , 2015 .
[29] M. C. Lavalle. CARACTERES DIAGNÓSTICOS FOLIARES EN ESPECIES NEOTROPICALES DE MARATTIA SW. (MARATTIACEAE–PTERIDOPHYTA)1 , 2007 .
[30] A. von Haeseler,et al. UFBoot2: Improving the Ultrafast Bootstrap Approximation , 2017, bioRxiv.
[31] Frédéric Delsuc,et al. MACSE: Multiple Alignment of Coding SEquences Accounting for Frameshifts and Stop Codons , 2011, PloS one.
[32] B. Bomfleur,et al. The fossil Osmundales (Royal Ferns)—a phylogenetic network analysis, revised taxonomy, and evolutionary classification of anatomically preserved trunks and rhizomes , 2017, PeerJ.
[33] Stephen McLoughlin,et al. Fossilized Nuclei and Chromosomes Reveal 180 Million Years of Genomic Stasis in Royal Ferns , 2014, Science.
[34] Min Wang,et al. Rates of morphological evolution are heterogeneous in Early Cretaceous birds , 2016, Proceedings of the Royal Society B: Biological Sciences.
[35] Saravanaraj N. Ayyampalayam,et al. Phylotranscriptomic analysis of the origin and early diversification of land plants , 2014, Proceedings of the National Academy of Sciences.
[36] S. Mamay. Some American Carboniferous Fern Fructifications , 1950 .
[37] P. Goloboff. Extended implied weighting , 2014, Cladistics : the international journal of the Willi Hennig Society.
[38] G. Rothwell,et al. Todea from the Lower Cretaceous of western North America: implications for the phylogeny, systematics, and evolution of modern Osmundaceae. , 2008, American journal of botany.
[39] Daniel L. Ayres,et al. Bayesian phylogenetic and phylodynamic data integration using BEAST 1.10 , 2018, Virus evolution.
[40] E. Birney,et al. Velvet: algorithms for de novo short read assembly using de Bruijn graphs. , 2008, Genome research.
[41] W. Jokat,et al. Timing and geometry of early Gondwana breakup , 2003 .
[42] G. Rothwell,et al. Osmunda cinnamomea (Osmundaceae) in the Upper Cretaceous of Western North America: Additional Evidence for Exceptional Species Longevity among Filicalean Ferns , 1999, International Journal of Plant Sciences.
[43] G. Mapes,et al. MILLAYA GEN. N., AN UPPER PALEOZOIC GENUS OF MARATTIALEAN SYNANGIA' , 1979 .
[44] J. Kvaček. Marattiopsis vodrazkae sp. nov. (Marattiaceae) from the Campanian of the Hidden Lake Formation, James Ross Island, Antarctica , 2014 .
[45] J. Webb. A new marattialean fern from the Middle Triassic of eastern Australia , 2001 .
[46] K. G. Karol,et al. Plastome sequences of an ancient fern lineage reveal remarkable changes in gene content and architecture. , 2017, American journal of botany.
[47] James W. Clark,et al. Are the genomes of royal ferns really frozen in time? Evidence for coinciding genome stability and limited evolvability in the royal ferns. , 2015, The New phytologist.
[48] Tanja Gernhard,et al. The conditioned reconstructed process. , 2008, Journal of theoretical biology.
[49] C. Miller. Evolution of the Fern Family Osmundaceae Based on Anatomical Studies , 1971 .
[50] K. Pryer,et al. Incongruence between primary sequence data and the distribution of a mitochondrial atp1 group II intron among ferns and horsetails. , 2005, Molecular phylogenetics and evolution.
[51] Hongmei Liu,et al. Towards the conservation of the Mesozoic relict fern Christensenia: a fern species with extremely small populations in China , 2019, Journal of Plant Research.
[52] A. Murdock. A taxonomic revision of the eusporangiate fern family Marattiaceae, with description of a new genus Ptisana , 2008 .
[53] J. Bergsten. A review of long‐branch attraction , 2005, Cladistics : the international journal of the Willi Hennig Society.
[54] Wilson N. Stewart. Paleobotany and the Evolution of Plants , 1983 .
[55] M. Siddall. Stratigraphic Fit to Phylogenies: A Proposed Solution , 1998 .
[56] B. Bomfleur,et al. A new marattiaceous fern from the Lower Jurassic of Patagonia (Argentina): the renaissance of Marattiopsis , 2015 .
[57] M. Christenhusz,et al. Revision of the fern family Marattiaceae in the Seychelles with two new species and a discussion of the African Ptisana fraxinea complex , 2014 .
[58] Michael A. Sundue,et al. A 4000-species dataset provides new insight into the evolution of ferns. , 2016, Molecular phylogenetics and evolution.
[59] De‐Zhu Li,et al. Chloroplast phylogenomics resolves key relationships in ferns , 2015 .
[60] K. Pryer,et al. ABRUPT DECELERATION OF MOLECULAR EVOLUTION LINKED TO THE ORIGIN OF ARBORESCENCE IN FERNS , 2010, Evolution; international journal of organic evolution.
[61] Jeffrey P. Mower,et al. Evolutionary dynamics of the plastid inverted repeat: the effects of expansion, contraction, and loss on substitution rates. , 2016, The New phytologist.
[62] Luo Shugang,et al. Phylogeny and divergence of Chinese Angiopteridaceae based on chloroplast DNA sequence data (rbcL and trnL-F) , 2007 .
[63] M. Siddall. Stratigraphic Consistency and the Shape of Things , 1996 .
[64] M. Norell,et al. Comments on the Manhattan Stratigraphic Measure , 2001 .
[65] R. Rohn,et al. Petrified Marattiales pinnae from the Lower Permian of North-Western Gondwana (Parnaíba Basin, Brazil) , 2014 .
[66] C. Cleal,et al. Taxonomic revision of the Palaeozoic marattialean fern Acitheca Schimper , 2006 .
[67] C. R. Hill. Jurassic Angiopteris (Marattiales) from North Yorkshire , 1987 .
[68] Richard H. Ree,et al. Maximum likelihood inference of geographic range evolution by dispersal, local extinction, and cladogenesis. , 2008, Systematic biology.
[69] G. Sablok,et al. Sequencing the Plastid Genome of Giant Ragweed (Ambrosia trifida, Asteraceae) From a Herbarium Specimen , 2019, Front. Plant Sci..
[70] V. Krassilov,et al. Cenomanian florule of Nammoura, Lebanon , 2000 .
[71] Aaron R. Quinlan,et al. Bioinformatics Applications Note Genome Analysis Bedtools: a Flexible Suite of Utilities for Comparing Genomic Features , 2022 .
[72] Y. Hu,et al. A well-resolved fern nuclear phylogeny reveals the evolution history of numerous transcription factor families. , 2018, Molecular phylogenetics and evolution.
[73] M. Laurin. The evolution of body size, Cope's rule and the origin of amniotes. , 2004, Systematic biology.
[74] M. Donoghue,et al. An uncorrelated relaxed-clock analysis suggests an earlier origin for flowering plants , 2010, Proceedings of the National Academy of Sciences.
[75] Michael S. Barker,et al. Fern genomes elucidate land plant evolution and cyanobacterial symbioses , 2018, Nature Plants.
[76] M. Christenhusz. Evolutionary History and Taxonomy of Neotropical Marattioid Ferns: Studies of an Ancient Lineage of Plants , 2007 .
[77] W. P. Schimper. Traité de paléontologie végétale ou la flore du monde primitif dans ses rapports avec les formations géologiques et la flore du monde actuel , 1869 .
[78] W. DiMichele,et al. The ecology of Paleozoic ferns , 2002 .
[79] Ki-Joong Kim,et al. Evolution of six novel ORFs in the plastome of Mankyua chejuense and phylogeny of eusporangiate ferns , 2018, Scientific Reports.
[80] Jeffrey P. Mower,et al. Complete plastid genomes from Ophioglossum californicum, Psilotum nudum, and Equisetum hyemale reveal an ancestral land plant genome structure and resolve the position of Equisetales among monilophytes , 2013, BMC Evolutionary Biology.
[81] K. Pryer,et al. Phylogenetic relationships of extant ferns based on evidence from morphology and rbcL sequences , 1995 .
[82] Bengt Oxelman,et al. Improvements to resampling measures of group support , 2003 .
[83] Thomas K. F. Wong,et al. ModelFinder: Fast Model Selection for Accurate Phylogenetic Estimates , 2017, Nature Methods.
[84] Chung-Shien Wu,et al. Chloroplast genome (cpDNA) of Cycas taitungensis and 56 cp protein-coding genes of Gnetum parvifolium: insights into cpDNA evolution and phylogeny of extant seed plants. , 2007, Molecular biology and evolution.
[85] D. Cook,et al. ggbio: an R package for extending the grammar of graphics for genomic data , 2012, Genome Biology.
[86] C. R. Hill,et al. Evolutionary cladistics of Marattialean ferns , 1986 .
[87] Robert Lanfear,et al. PartitionFinder 2: New Methods for Selecting Partitioned Models of Evolution for Molecular and Morphological Phylogenetic Analyses. , 2016, Molecular biology and evolution.
[88] H. P. Banks,et al. IBYKA AMPHIKOMA, GEN. ET SP. N., A NEW PROTOARTICULATE PRECURSOR FROM THE LATE MIDDLE DEVONIAN OF NEW YORK STATE , 1973 .
[89] Gonzalo Giribet,et al. Dynamic homology and phylogenetic systematics: a unified approach using POY , 2006 .
[90] J. Galtier,et al. Permineralized Marattiales from the Stephanian and Autunian of central France: a reinvestigation of Grandeuryella renaultii (Stur) Weiss emend , 1992 .
[91] Matthew W. Pennell,et al. The choice of tree prior and molecular clock does not substantially affect phylogenetic inferences of diversification rates , 2018, bioRxiv.
[92] Robert S. Harris,et al. Improved pairwise alignment of genomic dna , 2007 .
[93] R. Roessler,et al. First Grammatopteris tree ferns from the Southern Hemisphere – new insights in the evolution of the Osmundaceae from the Permian of Brazil , 2002 .
[94] Hong Ma,et al. Order-level fern plastome phylogenomics: new insights from Hymenophyllales. , 2018, American journal of botany.
[95] S. Nazir,et al. Chloroplast-encoded chlB gene from Pinus thunbergii promotes root and early chlorophyll pigment development in Nicotiana tabaccum , 2012, Molecular Biology Reports.
[96] H. Schneider,et al. Is Morphology Really at Odds with Molecules in Estimating Fern Phylogeny? , 2009 .
[97] M. Hasebe,et al. Complete nucleotide sequence of the chloroplast genome from a leptosporangiate fern, Adiantum capillus-veneris L. , 2003, DNA research : an international journal for rapid publication of reports on genes and genomes.
[98] S. Salzberg,et al. Versatile and open software for comparing large genomes , 2004, Genome Biology.
[99] J. B. Davidson,et al. The evolution of chloroplast genes and genomes in ferns , 2011, Plant Molecular Biology.
[100] Paul G. Wolf,et al. Horsetails and ferns are a monophyletic group and the closest living relatives to seed plants , 2001, Nature.
[101] R. Ro. First Grammatopteris tree ferns from the Southern Hemisphere ^ new insights in the evolution of the Osmundaceae from the Permian of Brazil , 2002 .
[102] One Thousand Plant Transcriptomes Initiative. One thousand plant transcriptomes and the phylogenomics of green plants , 2019 .
[103] C. Hillenbrand,et al. Widespread Antarctic glaciation during the Late Eocene , 2017 .
[104] P. Goloboff,et al. Morphological Data Sets Fit a Common Mechanism Much More Poorly than DNA Sequences and Call Into Question the Mkv Model , 2018, Systematic biology.
[105] Bo Wang,et al. Plastome Sequences of Lygodium japonicum and Marsilea crenata Reveal the Genome Organization Transformation from Basal Ferns to Core Leptosporangiates , 2013, Genome biology and evolution.
[106] J. Walker. GSA Geologic Time Scale v. 5.0 , 2019 .
[107] J. Galtier,et al. Studies of Paleozoic marattialean ferns : Scolecopteris globiforma n.sp., from the Stephanian of France , 1990 .
[108] G. Mapes,et al. A new species of Acitheca (Marattiales) from the Middle Pennsylvanian of Oklahoma , 1979 .
[109] M. Chase,et al. Trends and concepts in fern classification. , 2014, Annals of botany.
[110] R. Varshney,et al. Exploiting EST databases for the development and characterization of gene-derived SSR-markers in barley (Hordeum vulgare L.) , 2003, Theoretical and Applied Genetics.
[111] K. Fitzhugh. The ‘requirement of total evidence’ and its role in phylogenetic systematics , 2006 .
[112] M. Millay. ACAULANGIUM GEN. N., A FERTILE MARATTIALEAN FROM THE UPPER PENNSYLVANIAN OF ILLINOIS , 1977 .
[113] K. Pryer,et al. Fern phylogeny inferred from 400 leptosporangiate species and three plastid genes , 2007 .
[114] C. Rolleri. Revision of the genus Christensenia , 1993 .
[115] Jun Wang,et al. Chansitheca wudaensis (Gleicheniaceae, fern) from the early Permian Wuda Tuff Flora, Inner Mongolia , 2016 .
[116] Seraina Klopfstein,et al. A Total-Evidence Approach to Dating with Fossils, Applied to the Early Radiation of the Hymenoptera , 2012, Systematic biology.
[117] J. V. K. Cittert. Palaeobotany of the Mesophytic II. New and noteworthy jurassic ferns from Yorkshire , 1966 .
[118] Gonçalo R. Abecasis,et al. The Sequence Alignment/Map format and SAMtools , 2009, Bioinform..
[119] G. Rothwell,et al. Resolving the overall pattern of marattialean fern phylogeny. , 2018, American journal of botany.
[120] Pamela S Soltis,et al. Plastid phylogenomic analysis of green plants: A billion years of evolutionary history. , 2018, American journal of botany.
[121] C. Scotese. PALEOMAP PALEOATLAS FOR GPLATES AND THE PALEODATAPLOTTER PROGRAM , 2016 .
[122] Liu,et al. Zhutheca Liu, Li et Hilton gen. nov., the fertile pinnules of Fascipteris densata Gu et Zhi and their significance in marattialean evolution. , 2000, Review of palaeobotany and palynology.
[123] P. Goloboff,et al. TNT version 1.5, including a full implementation of phylogenetic morphometrics , 2016, Cladistics : the international journal of the Willi Hennig Society.
[124] M. Suchard,et al. Bayesian random local clocks, or one rate to rule them all , 2010, BMC Biology.
[125] M. Millay. A review of permineralized Euramerican Carboniferous tree ferns , 1997 .
[126] Graeme T. Lloyd,et al. Probabilistic divergence time estimation without branch lengths: dating the origins of dinosaurs, avian flight and crown birds , 2016, Biology Letters.
[127] Shusheng Hu,et al. A new marsilealean fern species from the Early Cretaceous of Jordan , 2008 .
[128] H. Tuomisto,et al. Evolutionary relationships within the Neotropical, eusporangiate fern genus Danaea (Marattiaceae). , 2008, Molecular phylogenetics and evolution.
[129] Sara P. Stubblefield. Taxonomic delimitation among Pennsylvanian marattialian fructifications , 1984 .
[130] A. Murdock. Phylogeny of marattioid ferns (Marattiaceae): inferring a root in the absence of a closely related outgroup. , 2008, American journal of botany.
[131] T. Taylor. On the structure and phylogenetic relationships of the fern Radstockia Kidston , 1967 .
[132] Robert K. Jansen,et al. Automatic annotation of organellar genomes with DOGMA , 2004, Bioinform..
[133] M. Laurin,et al. Fossils, molecules, divergence times, and the origin of lissamphibians. , 2007, Systematic biology.
[134] R. Schmid,et al. The Families and Genera of Vascular Plants. Vol. 1. Pteridophytes and Gymnosperms , 1991 .
[135] A. von Haeseler,et al. IQ-TREE: A Fast and Effective Stochastic Algorithm for Estimating Maximum-Likelihood Phylogenies , 2014, Molecular biology and evolution.
[136] P. Gerrienne,et al. A Namurian A (Silesian) permineralized flora from the Carrière du Lion at Engihoul (Belgium) , 1999 .
[137] B. M. Stidd. EVOLUTIONARY TRENDS IN THE MARATTIALES , 1974 .
[138] P. Lewis. A likelihood approach to estimating phylogeny from discrete morphological character data. , 2001, Systematic biology.
[139] Gaurav Vaidya,et al. SequenceMatrix: concatenation software for the fast assembly of multi‐gene datasets with character set and codon information , 2011, Cladistics : the international journal of the Willi Hennig Society.
[140] E. Taylor,et al. Osmunda (Osmundaceae) from the Triassic of Antarctica: an example of evolutionary stasis. , 1998, American journal of botany.
[141] Ting Wang,et al. Evolution of the rpoB-psbZ region in fern plastid genomes: notable structural rearrangements and highly variable intergenic spacers , 2011, BMC Plant Biology.
[142] Xun Xu,et al. One thousand plant transcriptomes and the phylogenomics of green plants , 2019, Nature.
[143] S. N. Césari,et al. Marattiaceae synangia from the Lower Cretaceous of Antarctica , 2016 .
[144] Ting Wang,et al. Complete chloroplast genome sequence of a tree fern Alsophila spinulosa: insights into evolutionary changes in fern chloroplast genomes , 2009, BMC Evolutionary Biology.
[145] C. Rothfels,et al. Accelerated rate of molecular evolution for vittarioid ferns is strong and not driven by selection. , 2014, Systematic biology.
[146] C. R. Hill,et al. Gemellitheca gen. nov., a fertile pecopterid fern from the Upper Permian of the Middle East , 1985 .
[147] C. R. Hill,et al. Qasimia gen. nov., an early Marattia-like fern from the Permian of Saudi Arabia , 1985 .
[148] Aaron M. Duffy,et al. The evolution of chloroplast genome structure in ferns. , 2010, Genome.
[149] O. Gascuel,et al. New algorithms and methods to estimate maximum-likelihood phylogenies: assessing the performance of PhyML 3.0. , 2010, Systematic biology.
[150] E. Kustatscher,et al. Danaeopsis Heer ex Schimper 1869 and its European Triassic species , 2012 .
[151] A. Pyron,et al. Divergence time estimation using fossils as terminal taxa and the origins of Lissamphibia. , 2011, Systematic biology.
[152] G. Rothwell. Fossils and ferns in the resolution of land plant phylogeny , 1999, The Botanical Review.
[153] T. Taylor,et al. A marattialean fern from the Triassic of Antarctica , 1992 .
[154] D. R. Farrar,et al. A community‐derived classification for extant lycophytes and ferns , 2016 .
[155] Ki-Joong Kim,et al. Chloroplast Genome Evolution in Early Diverged Leptosporangiate Ferns , 2014, Molecules and cells.
[156] Felix Grewe,et al. Horsetails are the sister group to all other monilophytes and Marattiales are sister to leptosporangiate ferns. , 2015, Molecular phylogenetics and evolution.
[157] Steven J. M. Jones,et al. Circos: an information aesthetic for comparative genomics. , 2009, Genome research.
[158] R. Lanfear,et al. Partitionfinder: combined selection of partitioning schemes and substitution models for phylogenetic analyses. , 2012, Molecular biology and evolution.
[159] B. Bomfleur,et al. Using more than the oldest fossils: dating osmundaceae with three Bayesian clock approaches. , 2015, Systematic biology.
[160] Pamela S Soltis,et al. Rate heterogeneity among lineages of tracheophytes: Integration of molecular and fossil data and evidence for molecular living fossils , 2002, Proceedings of the National Academy of Sciences of the United States of America.
[161] J. Sharpe. Plant growth and demography of the neotropical herbaceous fern Danaea wendlandii (Marattiaceae) in a Costa Rican rain forest , 1993 .
[162] E. Myers,et al. Basic local alignment search tool. , 1990, Journal of molecular biology.
[163] Cheng-Sen Li,et al. Fertile pinnules of Danaeites rigida Gu and Zhi (Marattiales) from the Upper Permian of south China , 2001 .
[164] Alexei J. Drummond,et al. Calibrated Tree Priors for Relaxed Phylogenetics and Divergence Time Estimation , 2011, Systematic biology.
[165] H. Tuomisto,et al. Prodromus of a fern flora for Bolivia. VIII. Marattiaceae , 2018 .
[166] Jeffrey P. Mower,et al. Complete mitochondrial genomes from the ferns Ophioglossum californicum and Psilotum nudum are highly repetitive with the largest organellar introns. , 2017, The New phytologist.
[167] W. DiMichele,et al. Stratigraphic and interregional changes in Pennsylvanian coal-swamp vegetation: Environmental inferences , 1985 .
[168] P. Goloboff. Analyzing Large Data Sets in Reasonable Times: Solutions for Composite Optima , 1999, Cladistics : the international journal of the Willi Hennig Society.
[169] Maxim Teslenko,et al. MrBayes 3.2: Efficient Bayesian Phylogenetic Inference and Model Choice Across a Large Model Space , 2012, Systematic biology.
[170] L. Shao,et al. The anatomically preserved stem Zhongmingella gen. nov. from the Upper Permian of China: evaluating the early evolution and phylogeny of the Osmundales , 2014 .
[171] M. Logacheva,et al. Comparative analysis of inverted repeats of polypod fern (Polypodiales) plastomes reveals two hypervariable regions , 2017, BMC Plant Biology.
[172] D. Pol,et al. Incorporating phylogenetic uncertainty on phylogeny‐based palaeontological dating and the timing of turtle diversification , 2013, Cladistics : the international journal of the Willi Hennig Society.
[173] J. Boore,et al. The Complete Plastid Genome Sequence of Angiopteris evecta (G. Forst.) Hoffm. (Marattiaceae) , 2007 .
[174] M. Crisp,et al. Clock model makes a large difference to age estimates of long-stemmed clades with no internal calibration: a test using Australian grasstrees , 2014, BMC Evolutionary Biology.
[175] P. Poczai,et al. Discovery of novel plastid phenylalanine (trnF) pseudogenes defines a distinctive clade in Solanaceae , 2013, SpringerPlus.
[176] Mark A. Miller,et al. Creating the CIPRES Science Gateway for inference of large phylogenetic trees , 2010, 2010 Gateway Computing Environments Workshop (GCE).
[177] Jun Wang,et al. Marattia aganzhenensis sp. nov. from the Lower Jurassic Daxigou Formation of Lanzhou, Gansu, China , 2008, International Journal of Plant Sciences.
[178] Wen-Bin Yu,et al. GetOrganelle: a fast and versatile toolkit for accurate de novo assembly of organelle genomes , 2018, Genome Biology.
[179] M. C. Lavalle. Taxonomía de las especies neotropicales de Marattia (Marattiaceae) , 2003 .
[180] Toni Gabaldón,et al. trimAl: a tool for automated alignment trimming in large-scale phylogenetic analyses , 2009, Bioinform..
[181] Yongdong Wang,et al. Fertile organs and in situ spores of Marattia asiatica (Kawasaki) Harris (Marattiales) from the Lower Jurassic Hsiangchi Formation in Hubei, China , 1999 .
[182] J. Vogel,et al. Schizaeaceae: a phylogenetic approach , 2002 .
[183] Aaron M. Duffy,et al. Conservation of selection on matK following an ancient loss of its flanking intron. , 2009, Gene.
[184] J. Galtier,et al. A reconsideration of four genera of permineralized Marattiales from the Stephanian and Autunian of France , 1991 .
[185] M. Norell,et al. Measures of stratigraphic fit to phylogeny and their sensitivity to tree size, tree shape, and scale , 2004 .
[186] M. Christenhusz. Revision of the Neotropical fern genus Eupodium (Marattiaceae) , 2010, Kew bulletin.
[187] S. Lehtonen. Towards Resolving the Complete Fern Tree of Life , 2011, PloS one.
[188] K. Nixon,et al. How Does the Inclusion of Fossil Data Change Our Conclusions about the Phylogenetic History of Euphyllophytes? , 2006, International Journal of Plant Sciences.
[189] Yuehong Yan,et al. Large-scale phylogenomic analysis resolves a backbone phylogeny in ferns , 2017, GigaScience.
[190] Characterization of the complete chloroplast genome of Cycas panzhihuaensis , 2017, Conservation Genetics Resources.
[191] P. Poczai,et al. The chloroplast genome sequence of bittersweet (Solanum dulcamara): Plastid genome structure evolution in Solanaceae , 2018, PloS one.
[192] C. Rothfels,et al. Genes Translocated into the Plastid Inverted Repeat Show Decelerated Substitution Rates and Elevated GC Content , 2016, Genome biology and evolution.