Cavitons and spontaneous hot flow anomalies in a hybrid-Vlasov global magnetospheric simulation
暂无分享,去创建一个
X. Blanco‐Cano | P. Cassak | S. Hoilijoki | M. Palmroth | E. Kilpua | R. Vainio | L. Turc | R. Jarvinen | L. Juusola | Y. Pfau‐Kempf | U. Ganse | R. Fear | D. Sibeck | A. Dimmock | M. Battarbee
[1] X. Blanco‐Cano,et al. Magnetosheath jet properties and evolution as determined by a global hybrid-Vlasov simulation , 2018, Annales Geophysicae.
[2] S. Hoilijoki,et al. On the Importance of Spatial and Velocity Resolution in the Hybrid-Vlasov Modeling of Collisionless Shocks , 2018, Front. Phys..
[3] X. Blanco‐Cano,et al. Cavitons and spontaneous hot flow anomalies in a hybrid-Vlasov global simulation , 2018 .
[4] B. Jakosky,et al. Spontaneous hot flow anomalies at Mars and Venus , 2017 .
[5] G. Collinson,et al. Structure and Properties of the Foreshock at Venus , 2017 .
[6] N. Omidi,et al. Traveling Foreshocks and Transient Foreshock Phenomena , 2017, 1711.01321.
[7] Can Huang,et al. Reformation of rippled quasi‐parallel shocks: 2‐D hybrid simulations , 2017 .
[8] Y. Pfau‐Kempf. Vlasiator From local to global magnetospheric hybrid-Vlasov simulations , 2016 .
[9] O. Hannuksela,et al. Mirror modes in the Earth's magnetosheath: Results from a global hybrid‐Vlasov simulation , 2016 .
[10] H. Zhang,et al. Impacts of spontaneous hot flow anomalies on the magnetosheath and magnetopause , 2016 .
[11] B. Lembège,et al. Formation of downstream high‐speed jets by a rippled nonstationary quasi‐parallel shock: 2‐D hybrid simulations , 2016 .
[12] L. Wilson. Low Frequency Waves at and Upstream of Collisionless Shocks , 2016 .
[13] L. L. Zhao,et al. Case and statistical studies on the evolution of hot flow anomalies , 2015 .
[14] O. Hannuksela,et al. Ion distributions in the Earth's foreshock: Hybrid‐Vlasov simulation and THEMIS observations , 2015 .
[15] M. Fujimoto,et al. What Controls the Structure and Dynamics of Earth’s Magnetosphere? , 2015 .
[16] O. Hannuksela,et al. ULF foreshock under radial IMF: THEMIS observations and global kinetic simulation Vlasiator results compared , 2015 .
[17] T. Horbury,et al. Global impacts of a Foreshock Bubble: Magnetosheath, magnetopause and ground-based observations , 2014, 1409.0390.
[18] Minna Palmroth,et al. Vlasiator: First global hybrid-Vlasov simulations of Earth's foreshock and magnetosheath , 2014 .
[19] H. Zhang,et al. Parametric dependencies of spontaneous hot flow anomalies , 2014 .
[20] Stefano Markidis,et al. Two-way coupling of a global Hall magnetohydrodynamics model with a local implicit particle-in-cell model , 2014, J. Comput. Phys..
[21] D. Sibeck,et al. Magnetosheath filamentary structures formed by ion acceleration at the quasi‐parallel bow shock , 2014 .
[22] C. Russell,et al. Statistical study of foreshock cavitons , 2013 .
[23] T. Horbury,et al. Magnetospheric response to magnetosheath pressure pulses: A low‐pass filter effect , 2013 .
[24] H. Zhang,et al. Spontaneous hot flow anomalies at quasi‐parallel shocks: 1. Observations , 2013 .
[25] D. Burgess,et al. Microphysics of Quasi-parallel Shocks in Collisionless Plasmas , 2013 .
[26] X. Blanco‐Cano,et al. Dynamics of the foreshock compressional boundary and its connection to foreshock cavities , 2013 .
[27] H. Zhang,et al. Spontaneous hot flow anomalies at quasi‐parallel shocks: 2. Hybrid simulations , 2013 .
[28] A. Spitkovsky,et al. COSMIC-RAY-INDUCED FILAMENTATION INSTABILITY IN COLLISIONLESS SHOCKS , 2012, 1211.6765.
[29] C. Russell,et al. Foreshock cavitons for different interplanetary magnetic field geometries: Simulations and observations , 2011 .
[30] C. Russell,et al. Multi-spacecraft study of foreshock cavitons upstream of the quasi-parallel bow shock , 2011 .
[31] Hank Childs,et al. VisIt: An End-User Tool for Visualizing and Analyzing Very Large Data , 2011 .
[32] C. Russell,et al. Analysis of waves surrounding foreshock cavitons , 2010 .
[33] Uppsala,et al. Supermagnetosonic jets behind a collisionless quasiparallel shock. , 2009, Physical review letters.
[34] I. Dandouras,et al. Magnetosheath cavities: case studies using Cluster observations , 2009 .
[35] Z. Németh,et al. A global study of hot flow anomalies using Cluster multi-spacecraft measurements , 2009, 1807.07368.
[36] C. Russell,et al. Global hybrid simulations: Foreshock waves and cavitons under radial interplanetary magnetic field geometry , 2009 .
[37] N. Omidi. Formation of cavities in the foreshock , 2007 .
[38] D. Sibeck,et al. Formation of hot flow anomalies and solitary shocks , 2007 .
[39] C. Russell,et al. Macrostructure of collisionless bow shocks: 2. ULF waves in the foreshock and magnetosheath , 2006 .
[40] C. Russell,et al. Macrostructure of collisionless bow shocks: 1. Scale lengths , 2005 .
[41] J. Eastwood,et al. Quasi‐monochromatic ULF foreshock waves as observed by the four‐spacecraft Cluster mission: 1. Statistical properties , 2005 .
[42] A. Balogh,et al. Quasi-parallel Shock Structure and Processes , 2005 .
[43] A. Balogh,et al. Quasi-perpendicular Shock Structure and Processes , 2005 .
[44] J. Sauvaud,et al. Production of gyrating ions from nonlinear wave-particle interaction upstream from the Earth's bow shock: A case study from Cluster-CIS , 2003 .
[45] G. Parks,et al. Three‐dimensional observations of gyrating ion distributions far upstream from the Earth's bow shock and their association with low‐frequency waves , 2001 .
[46] David G. Sibeck,et al. Comprehensive study of the magnetospheric response to a hot flow anomaly , 1999 .
[47] S. Schwartz. Hot flow anomalies near the Earth's bow shock , 1995 .
[48] R. Schunk,et al. Field-aligned expansion of plasma clouds in the ionosphere , 1995 .
[49] M. Fujimoto,et al. Two‐dimensional simulations of supercritical quasi‐parallel shocks: Upstream waves, downstream waves, and shock re‐formation , 1993 .
[50] Steven J. Schwartz,et al. Quasi-parallel shocks: A patchwork of three-dimensional structures , 1991 .
[51] D. Burgess. Cyclic behavior at quasi‐parallel collisionless shocks , 1989 .
[52] M. Kivelson,et al. Observations of the earth's bow shock under high Mach number/high plasma beta solar wind conditions , 1988 .
[53] S. Schwartz,et al. An active current sheet in the solar wind , 1985, Nature.
[54] C. Russell,et al. Upstream hydromagnetic waves and their association with backstreaming ion populations: ISEE 1 and 2 observations , 1981 .