Numerische Mathematik Interpolation operators in Orlicz – Sobolev spaces
暂无分享,去创建一个
[1] Philippe G. Ciarlet,et al. The finite element method for elliptic problems , 2002, Classics in applied mathematics.
[2] Ridgway Scott,et al. Constructive polynomial approximation in Sobolev spaces , 1978 .
[3] W. B. Liu,et al. Quasi-Norm interpolation error estimates for the piecewise linear finite element approximation of p-Laplacian problems , 2005, Numerische Mathematik.
[4] L. R. Scott,et al. The Mathematical Theory of Finite Element Methods , 1994 .
[5] P. Clément. Approximation by finite element functions using local regularization , 1975 .
[6] B. Dacorogna. Direct methods in the calculus of variations , 1989 .
[7] Wenbin Liu,et al. On Quasi-Norm Interpolation Error Estimation And A Posteriori Error Estimates for p-Laplacian , 2002, SIAM J. Numer. Anal..
[8] Carsten Ebmeyer,et al. Global Regularity in Fractional Order Sobolev Spaces for the p-Laplace Equation on Polyhedral Domains , 2005 .
[9] W. B. Liu,et al. Quasi-norm Error Bounds for the Nite Element Approximation of a Non-newtonian Ow , 1994 .
[10] Lars Diening,et al. Fractional estimates for non-differentiable elliptic systems with general growth , 2008 .
[11] L. R. Scott,et al. Finite element interpolation of nonsmooth functions satisfying boundary conditions , 1990 .
[12] John W. Barrett,et al. Finite element approximation of the p-Laplacian , 1993 .
[13] John W. Barrett,et al. Finite-Element Approximation of Degenerate Quasi-Linear Elliptic and Parabolic Problems , 1994 .
[14] C. Ebmeyer,et al. Global regularity in Nikolskij spaces for elliptic equations with p-structure on polyhedral domains , 2005 .
[15] Wenbin Liu,et al. Quasi-norm a priori and a posteriori error estimates for the nonconforming approximation of p-Laplacian , 2001, Numerische Mathematik.
[16] F. Smithies,et al. Convex Functions and Orlicz Spaces , 1962, The Mathematical Gazette.
[17] M. Rao,et al. Theory of Orlicz spaces , 1991 .