Bayesian calibration and uncertainty analysis of hydrological models: A comparison of adaptive Metropolis and sequential Monte Carlo samplers

[1] Bayesian statistical inference implemented by stochastic algorithms such as Markov chain Monte Carlo (MCMC) provides a flexible probabilistic framework for model calibration that accounts for both model and parameter uncertainties. The effectiveness of such Monte Carlo algorithms depends strongly on the user-specified proposal or sampling distribution. In this article, a sequential Monte Carlo (SMC) approach is used to obtain posterior parameter estimates of a conceptual hydrologic model using data from selected catchments in eastern Australia. The results are evaluated against the popular adaptive Metropolis MCMC sampling approach. Both methods display robustness and convergence, but the SMC displays greater efficiency in exploring the parameter space in catchments where the optimal solutions lie in the tails of the prescribed prior distribution. The SMC method is also able to identify a different set of parameters with an overall improvement in likelihood and Nash-Sutcliffe efficiency for selected catchments. As a result of its population-based sampling mechanism, the SMC method is shown to offer improved efficiency in identifying parameter optimization and to provide sampling robustness, in particular in identifying global posterior modes.

[1]  D. Higdon,et al.  Accelerating Markov Chain Monte Carlo Simulation by Differential Evolution with Self-Adaptive Randomized Subspace Sampling , 2009 .

[2]  S. Sorooshian,et al.  Automatic calibration of conceptual rainfall-runoff models: The question of parameter observability and uniqueness , 1983 .

[3]  Ajay Jasra,et al.  On population-based simulation for static inference , 2007, Stat. Comput..

[4]  Keith Beven,et al.  The future of distributed models: model calibration and uncertainty prediction. , 1992 .

[5]  Yanan Fan,et al.  Towards automating model selection for a mark–recapture–recovery analysis , 2009 .

[6]  Heikki Haario,et al.  Adaptive proposal distribution for random walk Metropolis algorithm , 1999, Comput. Stat..

[7]  S. Sorooshian,et al.  Effective and efficient global optimization for conceptual rainfall‐runoff models , 1992 .

[8]  Kuolin Hsu,et al.  Uncertainty assessment of hydrologic model states and parameters: Sequential data assimilation using the particle filter , 2005 .

[9]  Neil J. Gordon,et al.  A tutorial on particle filters for online nonlinear/non-Gaussian Bayesian tracking , 2002, IEEE Trans. Signal Process..

[10]  Soroosh Sorooshian,et al.  Toward improved calibration of hydrologic models: Combining the strengths of manual and automatic methods , 2000 .

[11]  N. Metropolis,et al.  Equation of State Calculations by Fast Computing Machines , 1953, Resonance.

[12]  Keith Beven,et al.  Detection of structural inadequacy in process‐based hydrological models: A particle‐filtering approach , 2008 .

[13]  George Kuczera,et al.  Combining site and regional flood information using a Bayesian Monte Carlo approach , 2009 .

[14]  M. P. Wand,et al.  Generalised linear mixed model analysis via sequential Monte Carlo sampling , 2008, 0810.1163.

[15]  A. Tarantola Inverse problem theory : methods for data fitting and model parameter estimation , 1987 .

[16]  Tao Huang,et al.  Combined Parameter and State Estimation in Particle Filtering , 2007, 2007 IEEE International Conference on Control and Automation.

[17]  H. Haario,et al.  An adaptive Metropolis algorithm , 2001 .

[18]  Paul Fearnhead,et al.  Computational methods for complex stochastic systems: a review of some alternatives to MCMC , 2008, Stat. Comput..

[19]  B. Bates,et al.  A Markov Chain Monte Carlo Scheme for parameter estimation and inference in conceptual rainfall‐runoff modeling , 2001 .

[20]  George Kuczera,et al.  Assessment of hydrologic parameter uncertainty and the worth of multiresponse data , 1998 .

[21]  C. Robert,et al.  Computational and Inferential Difficulties with Mixture Posterior Distributions , 2000 .

[22]  Martyn P. Clark,et al.  Rainfall‐runoff model calibration using informal likelihood measures within a Markov chain Monte Carlo sampling scheme , 2009 .

[23]  George Kuczera,et al.  Monte Carlo assessment of parameter uncertainty in conceptual catchment models: the Metropolis algorithm , 1998 .

[24]  Chao Yang,et al.  Learn From Thy Neighbor: Parallel-Chain and Regional Adaptive MCMC , 2009 .

[25]  S. Kou,et al.  Equi-energy sampler with applications in statistical inference and statistical mechanics , 2005, math/0507080.

[26]  M. Suchard,et al.  Joint Bayesian estimation of alignment and phylogeny. , 2005, Systematic biology.

[27]  N. Gordon,et al.  Novel approach to nonlinear/non-Gaussian Bayesian state estimation , 1993 .

[28]  Eric A. Lehmann,et al.  Evolutionary Optimization of Dynamics Models in Sequential Monte Carlo Target Tracking , 2009, IEEE Transactions on Evolutionary Computation.

[29]  M. J. Hall How well does your model fit the data , 2001 .

[30]  Jun S. Liu,et al.  Monte Carlo strategies in scientific computing , 2001 .

[31]  Stephen J. Roberts,et al.  Adaptive classification for Brain Computer Interface systems using Sequential Monte Carlo sampling , 2009, Neural Networks.

[32]  Mark M. Tanaka,et al.  Sequential Monte Carlo without likelihoods , 2007, Proceedings of the National Academy of Sciences.

[33]  Ashish Sharma,et al.  A comparative study of Markov chain Monte Carlo methods for conceptual rainfall‐runoff modeling , 2004 .

[34]  Luis R. Pericchi,et al.  A case for a reassessment of the risks of extreme hydrological hazards in the Caribbean , 2006 .

[35]  D. Rubin,et al.  Inference from Iterative Simulation Using Multiple Sequences , 1992 .

[36]  Martyn P. Clark,et al.  Framework for Understanding Structural Errors (FUSE): A modular framework to diagnose differences between hydrological models , 2008 .

[37]  C. Diks,et al.  Improved treatment of uncertainty in hydrologic modeling: Combining the strengths of global optimization and data assimilation , 2005 .

[38]  S. Sisson,et al.  Likelihood-free Markov chain Monte Carlo , 2010, 1001.2058.

[39]  C. Geyer,et al.  Annealing Markov chain Monte Carlo with applications to ancestral inference , 1995 .

[40]  Gareth O. Roberts,et al.  Non-centred parameterisations for hierarchical models and data augmentation. , 2003 .

[41]  Heikki Haario,et al.  DRAM: Efficient adaptive MCMC , 2006, Stat. Comput..

[42]  Jun S. Liu,et al.  Sequential Monte Carlo methods for dynamic systems , 1997 .

[43]  P. Moral,et al.  Sequential Monte Carlo samplers , 2002, cond-mat/0212648.

[44]  Soroosh Sorooshian,et al.  Dual state-parameter estimation of hydrological models using ensemble Kalman filter , 2005 .

[45]  G. Kitagawa Monte Carlo Filter and Smoother for Non-Gaussian Nonlinear State Space Models , 1996 .

[46]  H. Gupta,et al.  Estimating the uncertain mathematical structure of a water balance model via Bayesian data assimilation , 2009 .

[47]  C C Drovandi,et al.  Estimation of Parameters for Macroparasite Population Evolution Using Approximate Bayesian Computation , 2011, Biometrics.

[48]  Nando de Freitas,et al.  Sequential Monte Carlo Methods in Practice , 2001, Statistics for Engineering and Information Science.

[49]  S. Sorooshian,et al.  A Shuffled Complex Evolution Metropolis algorithm for optimization and uncertainty assessment of hydrologic model parameters , 2002 .

[50]  N. Chopin A sequential particle filter method for static models , 2002 .

[51]  Tyler Smith,et al.  Bayesian methods in hydrologic modeling: A study of recent advancements in Markov chain Monte Carlo techniques , 2008 .

[52]  A. Weerts,et al.  Particle filtering and ensemble Kalman filtering for state updating with hydrological conceptual rainfall‐runoff models , 2006 .