Metal/Semiconductor Hybrid Nanostructures for Plasmon‐Enhanced Applications

Hybrid nanostructures composed of semiconductor and plasmonic metal components are receiving extensive attention. They display extraordinary optical characteristics that are derived from the simultaneous existence and close conjunction of localized surface plasmon resonance and semiconduction, as well as the synergistic interactions between the two components. They have been widely studied for photocatalysis, plasmon-enhanced spectroscopy, biotechnology, and solar cells. In this review, the developments in the field of (plasmonic metal)/semiconductor hybrid nanostructures are comprehensively described. The preparation of the hybrid nanostructures is first presented according to the semiconductor type, as well as the nanostructure morphology. The plasmonic properties and the enabled applications of the hybrid nanostructures are then elucidated. Lastly, possible future research in this burgeoning field is discussed.

[1]  Changjian Lin,et al.  Fabrication and photoelectrochemical properties of ZnS/Au/TiO2 nanotube array films. , 2013, Physical chemistry chemical physics : PCCP.

[2]  T. Brown,et al.  Magnetic resonance imaging of major histocompatibility class II expression in the renal medulla using immunotargeted superparamagnetic iron oxide nanoparticles. , 2008, ACS nano.

[3]  Xiaoning Fu,et al.  Preparation and photocatalytic activity of eccentric Au-titania core-shell nanoparticles by block copolymer templates. , 2011, Physical chemistry chemical physics : PCCP.

[4]  M. S. El-shall,et al.  Formation mechanisms of gold-zinc oxide hexagonal nanopyramids by heterogeneous nucleation using microwave synthesis. , 2011, Langmuir : the ACS journal of surfaces and colloids.

[5]  Tian Ming,et al.  Plasmon-Controlled Fluorescence: Beyond the Intensity Enhancement , 2012 .

[6]  A. Bard,et al.  Novel carbon-doped TiO2 nanotube arrays with high aspect ratios for efficient solar water splitting. , 2006, Nano letters.

[7]  Ting Yang,et al.  Au/ZnS core/shell nanocrystals as an efficient anode photocatalyst in direct methanol fuel cells. , 2013, Chemical communications.

[8]  M. R. Kim,et al.  Reversible tunability of the near-infrared valence band plasmon resonance in Cu(2-x)Se nanocrystals. , 2011, Journal of the American Chemical Society.

[9]  Jin Zou,et al.  Anatase TiO2 single crystals with a large percentage of reactive facets , 2008, Nature.

[10]  Yanyan Song,et al.  Biotemplated synthesis of Au nanoparticles-TiO2 nanotube junctions for enhanced direct electrochemistry of heme proteins. , 2013, Chemical communications.

[11]  Paul Mulvaney,et al.  Drastic reduction of plasmon damping in gold nanorods. , 2002 .

[12]  G. Ou,et al.  Fe3O4–Au and Fe2O3–Au Hybrid Nanorods: Layer-by-Layer Assembly Synthesis and Their Magnetic and Optical Properties , 2010, Nanoscale research letters.

[13]  J. Ying,et al.  Diffusion of gold from the inner core to the surface of Ag(2)S nanocrystals. , 2010, Journal of the American Chemical Society.

[14]  S. G. Kumar,et al.  Review on modified TiO2 photocatalysis under UV/visible light: selected results and related mechanisms on interfacial charge carrier transfer dynamics. , 2011, The journal of physical chemistry. A.

[15]  M. Schvoerer,et al.  The role of copper and silver in the colouration of metallic luster decorations (Tunisia, 9th century; Mesopotamia, 10th century; Sicily, 16th century): A first approach , 2003 .

[16]  J. Bokhoven,et al.  One-pot photo-reductive N-alkylation of aniline and nitroarene derivatives with primary alcohols over Au-TiO2 , 2013 .

[17]  L. Manna,et al.  Optical and electrical properties of colloidal (spherical Au)-(spinel ferrite nanorod) heterostructures. , 2011, Nanoscale.

[18]  Wei Chen,et al.  Plasmonic Ag/AgBr nanohybrid: synergistic effect of SPR with photographic sensitivity for enhanced photocatalytic activity and stability. , 2012, Dalton transactions.

[19]  Jianfang Wang,et al.  Hydrothermal transformation from Au core-sulfide shell to Au nanoparticle-decorated sulfide hybrid nanostructures. , 2010, Nanoscale.

[20]  D. Blom,et al.  Au–Cu2O Core–Shell Nanoparticles: A Hybrid Metal-Semiconductor Heteronanostructure with Geometrically Tunable Optical Properties , 2011 .

[21]  P. Guyot-Sionnest,et al.  Preparation and optical properties of silver chalcogenide coated gold nanorods , 2006 .

[22]  Eva Syková,et al.  Poly(L-lysine)-modified iron oxide nanoparticles for stem cell labeling. , 2008, Bioconjugate chemistry.

[23]  K. Rajeshwar,et al.  Solution combustion synthesis of oxide semiconductors for solar energy conversion and environmental remediation. , 2009, Chemical Society reviews.

[24]  Jianfang Wang,et al.  Plasmon–molecule interactions , 2010 .

[25]  Kangnian Fan,et al.  Photodegradation of rhodamine B and 4-chlorophenol using plasmonic photocatalyst of Ag–AgI/Fe3O4@SiO2 magnetic nanoparticle under visible light irradiation , 2011 .

[26]  L. Manna,et al.  Size-tunable, hexagonal plate-like Cu3P and Janus-like Cu-Cu3P nanocrystals. , 2012, ACS nano.

[27]  N. Harris,et al.  Core-shell Nanoparticles With Self-regulating Plasmonic Functionality , 2007 .

[28]  M. El-Sayed,et al.  Following charge separation on the nanoscale in Cu₂O-Au nanoframe hollow nanoparticles. , 2011, Nano letters.

[29]  E. Zubarev,et al.  Functional Gold Nanorods: Synthesis, Self‐Assembly, and Sensing Applications , 2012, Advanced materials.

[30]  Luigi Carbone,et al.  Colloidal heterostructured nanocrystals: Synthesis and growth mechanisms , 2010 .

[31]  A. Feldhoff,et al.  Ag@ZnO Core–Shell Nanoparticles Formed by the Timely Reduction of Ag+ Ions and Zinc Acetate Hydrolysis in N,N-Dimethylformamide: Mechanism of Growth and Photocatalytic Properties , 2011 .

[32]  Lizhi Zhang,et al.  New insight into daylight photocatalysis of AgBr@Ag: synergistic effect between semiconductor photocatalysis and plasmonic photocatalysis. , 2012, Chemistry.

[33]  J. Aizpurua,et al.  Strong magnetic response of submicron silicon particles in the infrared. , 2010, Optics express.

[34]  M. Zeman,et al.  Modulated photonic-crystal structures as broadband back reflectors in thin-film solar cells , 2009 .

[35]  Lin Zhu,et al.  Tunable surface plasmon resonance of Au@Ag2S core–shell nanostructures containing voids , 2009 .

[36]  Jer‐Shing Huang,et al.  The influence of shell thickness of Au@TiO2 core-shell nanoparticles on the plasmonic enhancement effect in dye-sensitized solar cells. , 2013, Nanoscale.

[37]  Chuang Yue,et al.  Ag nanoparticle/ZnO hollow nanosphere arrays: large scale synthesis and surface plasmon resonance effect induced Raman scattering enhancement , 2012 .

[38]  B. Chichkov,et al.  Demonstration of magnetic dipole resonances of dielectric nanospheres in the visible region. , 2012, Nano letters.

[39]  Xianzhi Fu,et al.  A green and facile self-assembly preparation of gold nanoparticles/ZnO nanocomposite for photocatalytic and photoelectrochemical applications , 2012 .

[40]  W. Tremel,et al.  Controlled synthesis of linear and branched Au@ZnO hybrid nanocrystals and their photocatalytic properties. , 2013, Nanoscale.

[41]  Yadong Li,et al.  Au-ZnO hybrid nanopyramids and their photocatalytic properties. , 2011, Journal of the American Chemical Society.

[42]  Michael H. Huang,et al.  Au nanocrystal-directed growth of Au-Cu(2)O core-shell heterostructures with precise morphological control. , 2009, Journal of the American Chemical Society.

[43]  L. Meng,et al.  Facile synthesis of superparamagnetic Fe3O4@polyphosphazene@Au shells for magnetic resonance imaging and photothermal therapy. , 2013, ACS applied materials & interfaces.

[44]  Uri Banin,et al.  Selective Growth of Metal Tips onto Semiconductor Quantum Rods and Tetrapods , 2004, Science.

[45]  Jinghua Yu,et al.  Visible light photoelectrochemical sensor based on Au nanoparticles and molecularly imprinted poly(o-phenylenediamine)-modified TiO2 nanotubes for specific and sensitive detection chlorpyrifos. , 2013, The Analyst.

[46]  Zhenyu Liu,et al.  Synthesis of thermally stable Ag@TiO2 core–shell nanoprisms and plasmon–enhanced optical properties for a P3HT thin film , 2013 .

[47]  Jianfang Wang,et al.  Plasmonic gold-superparamagnetic hematite heterostructures. , 2011, Langmuir : the ACS journal of surfaces and colloids.

[48]  T. Shanmugapriya,et al.  Photoluminescence Enhancement of Nanogold Decorated CdS Quantum Dots , 2013 .

[49]  Z. Tang,et al.  Noble metal nanoparticle@metal oxide core/yolk-shell nanostructures as catalysts: recent progress and perspective. , 2014, Nanoscale.

[50]  T. Torimoto,et al.  Plasmon-Enhanced Photocatalytic Activity of Cadmium Sulfide Nanoparticle Immobilized on Silica-Coated Gold Particles , 2011 .

[51]  Fangqiong Tang,et al.  Multifunctional Fe3O4@P(St/MAA)@chitosan@Au core/shell nanoparticles for dual imaging and photothermal therapy. , 2013, ACS applied materials & interfaces.

[52]  Jianfang Wang,et al.  Fano resonance in (gold core)-(dielectric shell) nanostructures without symmetry breaking. , 2012, Small.

[53]  Tong-Yi Zhang,et al.  Growth and Photocatalytic Activity of Dendrite-like ZnO@Ag Heterostructure Nanocrystals , 2009 .

[54]  H. Zeng,et al.  Synthesis, morphological control, and antibacterial properties of hollow/solid Ag2S/Ag heterodimers. , 2010, Journal of the American Chemical Society.

[55]  M. Jaroniec,et al.  Nitrogen and sulfur co-doped TiO2 nanosheets with exposed {001} facets: synthesis, characterization and visible-light photocatalytic activity. , 2011, Physical chemistry chemical physics : PCCP.

[56]  Y. Tachibana,et al.  Artificial photosynthesis for solar water-splitting , 2012, Nature Photonics.

[57]  Xin Liu,et al.  Site-specific growth of Au particles on ZnO nanopyramids under ultraviolet illumination. , 2011, Nanoscale.

[58]  O. Vaughan,et al.  Efficient epoxidation of a terminal alkene containing allylic hydrogen atoms: trans-methylstyrene on Cu{111}. , 2005, Journal of the American Chemical Society.

[59]  Bing Xu,et al.  Biofunctional magnetic nanoparticles for protein separation and pathogen detection. , 2006, Chemical communications.

[60]  Yeon-Tae Yu,et al.  Synthesis of core-shell Au@TiO2 nanoparticles with truncated wedge-shaped morphology and their photocatalytic properties. , 2009, Langmuir : the ACS journal of surfaces and colloids.

[61]  Claire M. Cobley,et al.  Controlling the synthesis and assembly of silver nanostructures for plasmonic applications. , 2011, Chemical reviews.

[62]  Federico Capasso,et al.  Fano-like interference in self-assembled plasmonic quadrumer clusters. , 2010, Nano letters.

[63]  D. Zhao,et al.  Superparamagnetic high-magnetization microspheres with an Fe3O4@SiO2 core and perpendicularly aligned mesoporous SiO2 shell for removal of microcystins. , 2008, Journal of the American Chemical Society.

[64]  Ququan Wang,et al.  Synthesis of Au–CdS Core–Shell Hetero‐Nanorods with Efficient Exciton–Plasmon Interactions , 2011 .

[65]  H. Gu,et al.  Effect of Ag nanoparticle size on the photoelectrochemical properties of Ag decorated TiO2 nanotube arrays , 2013 .

[66]  Qiwei Tian,et al.  One-pot synthesis of large-scaled Janus Ag–Ag2S nanoparticles and their photocatalytic properties , 2011 .

[67]  M. S. El-shall,et al.  Hybrid Au-CdSe and Ag-CdSe nanoflowers and core-shell nanocrystals via one-pot heterogeneous nucleation and growth. , 2011, Small.

[68]  N. Halas,et al.  Metallic nanoshells with semiconductor cores: optical characteristics modified by core medium properties. , 2010, ACS nano.

[69]  J. Livage,et al.  Optical switching of au-doped VO2 sol-gel films , 1999 .

[70]  H. García,et al.  Influence of excitation wavelength (UV or visible light) on the photocatalytic activity of titania containing gold nanoparticles for the generation of hydrogen or oxygen from water. , 2011, Journal of the American Chemical Society.

[71]  Jinlong Zhang,et al.  Preparation and photocatalytic properties of Fe3+-doped Ag@TiO2 core-shell nanoparticles. , 2008, Journal of colloid and interface science.

[72]  Yasuhiro Shiraishi,et al.  Gold nanoparticles located at the interface of anatase/rutile TiO2 particles as active plasmonic photocatalysts for aerobic oxidation. , 2012, Journal of the American Chemical Society.

[73]  R. Kooyman,et al.  Signal amplification on planar and gel-type sensor surfaces in surface plasmon resonance-based detection of prostate-specific antigen. , 2004, Analytical biochemistry.

[74]  Yuji Horie,et al.  Au-ultrathin functionalized core–shell (Fe3O4@Au) monodispersed nanocubes for a combination of magnetic/plasmonic photothermal cancer cell killing , 2013 .

[75]  E. Thimsen,et al.  Plasmonic solar water splitting , 2012 .

[76]  C. Clavero,et al.  Plasmon-induced hot-electron generation at nanoparticle/metal-oxide interfaces for photovoltaic and photocatalytic devices , 2014, Nature Photonics.

[77]  Gongxuan Lu,et al.  Visible light induced CO2 reduction and Rh B decolorization over electrostatic-assembled AgBr/palygorskite. , 2012, Journal of colloid and interface science.

[78]  D. Wilkinson,et al.  Nano-architecture and material designs for water splitting photoelectrodes. , 2012, Chemical Society reviews.

[79]  Charles M. Lieber,et al.  Semiconductor nanowires: a platform for exploring limits and concepts for nano-enabled solar cells , 2013 .

[80]  M. Ouyang,et al.  Nonepitaxial Growth of Hybrid Core-Shell Nanostructures with Large Lattice Mismatches , 2010, Science.

[81]  Y. Cho,et al.  Synthesis of Au−Cu2S Core−Shell Nanocrystals and Their Photocatalytic and Electrocatalytic Activity , 2010 .

[82]  Peng Wang,et al.  Plasmonic photocatalysts: harvesting visible light with noble metal nanoparticles. , 2012, Physical chemistry chemical physics : PCCP.

[83]  M. A. García,et al.  Synthetic tuning of the catalytic properties of Au-Fe3O4 nanoparticles. , 2010, Angewandte Chemie.

[84]  R. Naidu,et al.  Tailored titanium dioxide photocatalysts for the degradation of organic dyes in wastewater treatment: A review , 2009 .

[85]  N. Halas,et al.  Nano-optics from sensing to waveguiding , 2007 .

[86]  Miaofang Chi,et al.  A highly active titanium dioxide based visible-light photocatalyst with nonmetal doping and plasmonic metal decoration. , 2011, Angewandte Chemie.

[87]  Majid Minary-Jolandan,et al.  A Review of Mechanical and Electromechanical Properties of Piezoelectric Nanowires , 2012, Advanced materials.

[88]  W. Lu,et al.  Synthesis of core/shell nanoparticles of Au/CdSe via Au-Cd bialloy precursor. , 2005, Langmuir : the ACS journal of surfaces and colloids.

[89]  June-Ki Park,et al.  Plasmon–Exciton Interactions in Hybrid Structures of Au Nanohemispheres and CdS Nanowires for Improved Photoconductive Devices , 2013 .

[90]  H. Nagel,et al.  Cost-effective methods of texturing for silicon solar cells , 2002 .

[91]  Evan L. Runnerstrom,et al.  Dynamically modulating the surface plasmon resonance of doped semiconductor nanocrystals. , 2011, Nano letters.

[92]  Hedi Mattoussi,et al.  Luminescent quantum dots as platforms for probing in vitro and in vivo biological processes. , 2012, Advanced drug delivery reviews.

[93]  Y. Bando,et al.  Ternary modified TiO2 as a simple and efficient photocatalyst for green organic synthesis. , 2013, Chemical Communications.

[94]  Huanjun Chen,et al.  Gold nanorods and their plasmonic properties. , 2013, Chemical Society reviews.

[95]  Fei Le,et al.  Nanorice: a hybrid plasmonic nanostructure. , 2006, Nano letters.

[96]  A Paul Alivisatos,et al.  Localized surface plasmon resonances arising from free carriers in doped quantum dots. , 2011, Nature materials.

[97]  W. Tremel,et al.  Au@MnO nanoflowers: hybrid nanocomposites for selective dual functionalization and imaging. , 2010, Angewandte Chemie.

[98]  Jun‐Jie Zhu,et al.  Fast One-Step Synthesis of Biocompatible ZnO/Au Nanocomposites with Hollow Doughnut-Like and Other Controlled Morphologies , 2012 .

[99]  N. Tamai,et al.  Dual Transient Bleaching of Au/PbS Hybrid Core/Shell Nanoparticles. , 2012, The journal of physical chemistry letters.

[100]  Jianfang Wang,et al.  Understanding the photothermal conversion efficiency of gold nanocrystals. , 2010, Small.

[101]  Morteza Mahmoudi,et al.  Optimal design and characterization of superparamagnetic iron oxide nanoparticles coated with polyvinyl alcohol for targeted delivery and imaging. , 2008, The journal of physical chemistry. B.

[102]  M. L. Curri,et al.  Photocatalytic synthesis of silver nanoparticles stabilized by TiO2 nanorods: a semiconductor/metal nanocomposite in homogeneous nonpolar solution. , 2004, Journal of the American Chemical Society.

[103]  Tao Zhang,et al.  A facile approach to Fe3O4@Au nanoparticles with magnetic recyclable catalytic properties , 2010 .

[104]  Jinyou Xu,et al.  Surface plasmon resonance enhanced band-edge emission of CdS–SiO2 core–shell nanowires with gold nanoparticles attached , 2013 .

[105]  Hendry. I. Elim,et al.  Rational synthesis, self-assembly, and optical properties of PbS-Au heterogeneous nanostructures via preferential deposition. , 2006, Journal of the American Chemical Society.

[106]  Stephen B. Cronin,et al.  A Review of Surface Plasmon Resonance‐Enhanced Photocatalysis , 2013 .

[107]  Chun‐Yuen Wong,et al.  Cadmium Sulfide Silver Nanoplate Hybrid Structure: Synthesis and Fluorescence Enhancement , 2011 .

[108]  A. Tao,et al.  Localized surface plasmon resonances of anisotropic semiconductor nanocrystals. , 2011, Journal of the American Chemical Society.

[109]  L. Qi,et al.  Controlled synthesis of PbS-Au nanostar-nanoparticle heterodimers and cap-like Au nanoparticles. , 2010, Nanoscale.

[110]  Da Xing,et al.  Bio-modified Fe3O4 core/Au shell nanoparticles for targeting and multimodal imaging of cancer cells , 2012 .

[111]  G. Ho,et al.  Modification of ZnO nanorods through Au nanoparticles surface coating for dye-sensitized solar cells applications , 2010 .

[112]  Peter Bermel,et al.  Improving thin-film crystalline silicon solar cell efficiencies with photonic crystals. , 2007, Optics express.

[113]  Jianfang Wang,et al.  Growth of gold bipyramids with improved yield and their curvature-directed oxidation. , 2007, Small.

[114]  Ulrich Wiesner,et al.  Plasmonic dye-sensitized solar cells using core-shell metal-insulator nanoparticles. , 2011, Nano letters.

[115]  Ilkeun Lee,et al.  A yolk@shell nanoarchitecture for Au/TiO2 catalysts. , 2011, Angewandte Chemie.

[116]  D. Bahnemann,et al.  Kinetics and mechanisms of charge transfer processes in photocatalytic systems: A review , 2012 .

[117]  G. Hutchings,et al.  Tunable gold catalysts for selective hydrocarbon oxidation under mild conditions , 2005, Nature.

[118]  N. Hewa-Kasakarage,et al.  Suppression of the plasmon resonance in Au/CdS colloidal nanocomposites. , 2011, Nano letters.

[119]  T. Veres,et al.  Multifunctional Fe3O4−Au/Porous Silica@Fluorescein Core/Shell Nanoparticles with Enhanced Fluorescence Quantum Yield , 2010 .

[120]  H. Ming,et al.  Au/ZnO nanocomposites: facile fabrication and enhanced photocatalytic activity for degradation of benzene , 2012 .

[121]  H. Tada,et al.  One-Step Selective Aerobic Oxidation of Amines to Imines by Gold Nanoparticle-Loaded Rutile Titanium(IV) Oxide Plasmon Photocatalyst , 2013 .

[122]  Tymish Y. Ohulchanskyy,et al.  A general approach to binary and ternary hybrid nanocrystals. , 2006, Nano letters.

[123]  X. Duan,et al.  Plasmonic and catalytic AuPd nanowheels for the efficient conversion of light into chemical energy. , 2013, Angewandte Chemie.

[124]  T. Sritharan,et al.  Investigating the multiple roles of polyvinylpyrrolidone for a general methodology of oxide encapsulation. , 2013, Journal of the American Chemical Society.

[125]  Zhong Lin Wang,et al.  Facet-selective epitaxial growth of heterogeneous nanostructures of semiconductor and metal: ZnO nanorods on Ag nanocrystals. , 2009, Journal of the American Chemical Society.

[126]  A. Belcher,et al.  Highly efficient plasmon-enhanced dye-sensitized solar cells through metal@oxide core-shell nanostructure. , 2011, ACS nano.

[127]  W. Sigmund,et al.  Photocatalytic Carbon‐Nanotube–TiO2 Composites , 2009 .

[128]  Yadong Li,et al.  Semiconductor–noble metal hybrid nanomaterials with controlled structures , 2013 .

[129]  H. Kominami,et al.  Functionalization of a plasmonic Au/TiO2 photocatalyst with an Ag co-catalyst for quantitative reduction of nitrobenzene to aniline in 2-propanol suspensions under irradiation of visible light. , 2013, Chemical communications.

[130]  M. Cortie,et al.  Synthesis and optical properties of hybrid and alloy plasmonic nanoparticles. , 2011, Chemical reviews.

[131]  J. Di,et al.  Synthesis of Au–ZnS hybrid nanostructures and their application for electrochemical biosensor , 2012, Journal of Solid State Electrochemistry.

[132]  A. Sidorov,et al.  Absorption and scattering of infrared radiation by vanadium dioxide nanoparticles with a metallic shell , 2003 .

[133]  Can Li,et al.  Roles of cocatalysts in photocatalysis and photoelectrocatalysis. , 2013, Accounts of chemical research.

[134]  Shuai Chang,et al.  Enhancement of low energy sunlight harvesting in dye-sensitized solar cells using plasmonic gold nanorods , 2012 .

[135]  Xianzhi Fu,et al.  Synthesis of M@TiO2 (M = Au, Pd, Pt) Core–Shell Nanocomposites with Tunable Photoreactivity , 2011 .

[136]  Yong Yang,et al.  Preparation and enhanced off-resonance optical nonlinearities of CdS-capped gold nanoparticles embedded in BaTiO_3 thin films , 2002 .

[137]  A. Patra,et al.  Fluorescence enhancement and quenching of Eu3+ ions by Au–ZnO core-shell and Au nanoparticles , 2009 .

[138]  Jiaguo Yu,et al.  Synthesis and Enhanced Visible-Light Photoelectrocatalytic Activity of p−n Junction BiOI/TiO2 Nanotube Arrays , 2011 .

[139]  Qingbiao Li,et al.  A novel biomass coated Ag–TiO2 composite as a photoanode for enhanced photocurrent in dye-sensitized solar cells , 2013 .

[140]  T. Alan Hatton,et al.  Synthesis, properties and applications of Janus nanoparticles , 2011 .

[141]  S. Dai,et al.  Preparation of Well-Dispersed Superparamagnetic Iron Oxide Nanoparticles in Aqueous Solution with Biocompatible N-Succinyl-O-carboxymethylchitosan , 2008 .

[142]  Raffaele Molinari,et al.  Efficient visible-light photocatalytic water splitting by minute amounts of gold supported on nanoparticulate CeO2 obtained by a biopolymer templating method. , 2011, Journal of the American Chemical Society.

[143]  J. Hafner,et al.  Localized surface plasmon resonance sensors. , 2011, Chemical reviews.

[144]  A. Eychmüller,et al.  Colloidal semiconductor nanocrystals: the aqueous approach. , 2013, Chemical Society reviews.

[145]  Naomi J Halas,et al.  Theranostic nanoshells: from probe design to imaging and treatment of cancer. , 2011, Accounts of chemical research.

[146]  Younan Xia,et al.  Shape-controlled synthesis of metal nanocrystals: simple chemistry meets complex physics? , 2009, Angewandte Chemie.

[147]  T. Krauss,et al.  Chemical Mechanisms of Semiconductor Nanocrystal Synthesis , 2013 .

[148]  D. Basak,et al.  Highly enhanced UV emission due to surface plasmon resonance in Ag–ZnO nanorods , 2012 .

[149]  Ququan Wang,et al.  Symmetric and asymmetric Au-AgCdSe hybrid nanorods. , 2012, Nano letters.

[150]  G. Shao,et al.  Worm-Like Ag/ZnO Core−Shell Heterostructural Composites: Fabrication, Characterization, and Photocatalysis , 2012 .

[151]  Jun Jiang,et al.  Nanostructured metal chalcogenides: synthesis, modification, and applications in energy conversion and storage devices. , 2013, Chemical Society reviews.

[152]  Yung Doug Suh,et al.  Nanogap-engineerable Raman-active nanodumbbells for single-molecule detection. , 2010, Nature materials.

[153]  E. Rabani,et al.  Untitled #2 , 2020, Gender Futurity, Intersectional Autoethnography.

[154]  Georgios A Sotiriou,et al.  Hybrid, silica-coated, Janus-like plasmonic-magnetic nanoparticles. , 2011, Chemistry of materials : a publication of the American Chemical Society.

[155]  Shaoming Huang,et al.  Size control of Au@Cu2O octahedra for excellent photocatalytic performance , 2012 .

[156]  Dong-Hwang Chen,et al.  Fabrication and photocatalytic activities in visible and UV light regions of Ag@TiO2 and NiAg@TiO2 nanoparticles , 2009, Nanotechnology.

[157]  Indrajit Shown,et al.  Synthesis of beta-cyclodextrin-modified water-dispersible Ag-TiO2 core-shell nanoparticles and their photocatalytic activity. , 2011, Journal of nanoscience and nanotechnology.

[158]  J. M. Coronado,et al.  Development of alternative photocatalysts to TiO2: Challenges and opportunities , 2009 .

[159]  Xianguang Ding,et al.  Au–Cu2S heterodimer formation via oxidization of AuCu alloy nanoparticles and in situ formed copper thiolate , 2012 .

[160]  K. W. Shah,et al.  Composite Metal–Oxide Nanocatalysts , 2012 .

[161]  Siwen Wang,et al.  Enhanced visible light photocatalytic activity of interlayer-isolated triplex Ag@SiO2@TiO2 core-shell nanoparticles. , 2013, Nanoscale.

[162]  Xiwen Zhang,et al.  Mechanisms in photoluminescence enhancement of ZnO nanorod arrays by the localized surface plasmons of Ag nanoparticles , 2012 .

[163]  Milton Kerker,et al.  The optics of colloidal silver: something old and something new , 1985 .

[164]  James P. Lewis,et al.  Visible light plasmonic heating of Au-ZnO for the catalytic reduction of CO2. , 2013, Nanoscale.

[165]  Jianqiang Hu,et al.  Solution-phase synthesis of metal and/or semiconductor homojunction/heterojunction nanomaterials. , 2011, Nanoscale.

[166]  X. Qiu,et al.  Metal-semiconductor hybrid nanostructure Ag-Zn(0.9)Co(0.1)O: synthesis and room-temperature ferromagnetism. , 2007, Journal of the American Chemical Society.

[167]  Andrey L Rogach,et al.  Properties and Applications of Colloidal Nonspherical Noble Metal Nanoparticles , 2010, Advanced materials.

[168]  U. Banin,et al.  Synthesis and Characterization of Organic-Soluble Ag/AgBr Dimer Nanocrystals† , 2007 .

[169]  Q. Cai,et al.  Surface enhanced Raman scattering detecting polycyclic aromatic hydrocarbons with gold nanoparticle-modified TiO2 nanotube arrays , 2012 .

[170]  A. Walker,et al.  Facile One-Pot Synthesis of Metal−Semiconductor Hybrid Nanocrystals via Chemical Transformation: The Case of Cu−CuxS Heterodimers and Hetero-Oligomers , 2010 .

[171]  Jianfang Wang,et al.  Plasmon-enhanced chemical reactions , 2013 .

[172]  Qiqing Zhang,et al.  Fabrication of Cluster/Shell Fe3O4/Au Nanoparticles and Application in Protein Detection via a SERS Method , 2010 .

[173]  Hiroaki Tada,et al.  Self-assembled heterosupramolecular visible light photocatalyst consisting of gold nanoparticle-loaded titanium(IV) dioxide and surfactant. , 2010, Journal of the American Chemical Society.

[174]  A. Nurmikko,et al.  Enhanced magnetooptical response in dumbbell-like Ag-CoFe2O4 nanoparticle pairs. , 2005, Nano letters.

[175]  Jianfang Wang,et al.  Metal Nanocrystal‐Embedded Hollow Mesoporous TiO2 and ZrO2 Microspheres Prepared with Polystyrene Nanospheres as Carriers and Templates , 2013 .

[176]  Ewa Kowalska,et al.  Visible-light-induced photocatalysis through surface plasmon excitation of gold on titania surfaces. , 2010, Physical chemistry chemical physics : PCCP.

[177]  Huanjun Chen,et al.  Plasmonic harvesting of light energy for Suzuki coupling reactions. , 2013, Journal of the American Chemical Society.

[178]  Fangqiong Tang,et al.  A general protocol to coat titania shell on carbon-based composite cores using carbon as coupling agent , 2009 .

[179]  M. El-Sayed,et al.  Plasmonic Enhancement of Nonradiative Charge Carrier Relaxation and Proposed Effects from Enhanced Radiative Electronic Processes in Semiconductor−Gold Core−Shell Nanorod Arrays , 2011 .

[180]  S. Linic,et al.  Tuning Selectivity in Propylene Epoxidation by Plasmon Mediated Photo-Switching of Cu Oxidation State , 2013, Science.

[181]  Bo Li,et al.  One-pot gradient solvothermal synthesis of Au–Fe3O4 hybrid nanoparticles for magnetically recyclable catalytic applications , 2013 .

[182]  Romain Quidant,et al.  Thermo‐plasmonics: using metallic nanostructures as nano‐sources of heat , 2013 .

[183]  Jiaguo Yu,et al.  Enhancing photocatalytic activity of one-dimensional KNbO3 nanowires by Au nanoparticles under ultraviolet and visible-light , 2011 .

[184]  Wei Liu,et al.  Broadband unidirectional scattering by magneto-electric core-shell nanoparticles. , 2012, ACS nano.

[185]  Sarit S. Agasti,et al.  Gold nanoparticles in chemical and biological sensing. , 2012, Chemical reviews.

[186]  Vinay Gupta,et al.  Photo-conversion of CO2 using titanium dioxide: enhancements by plasmonic and co-catalytic nanoparticles , 2013, Nanotechnology.

[187]  Lei Chen,et al.  Tunable plasmon properties of Fe2O3@Ag substrate for surface-enhanced Raman scattering , 2011 .

[188]  Shutao Wang,et al.  Strongly visible-light responsive plasmonic shaped AgX:Ag (X = Cl, Br) nanoparticles for reduction of CO2 to methanol. , 2012, Nanoscale.

[189]  Tim H. Taminiau,et al.  Optical antennas direct single-molecule emission , 2008 .

[190]  Alfred Leitenstorfer,et al.  Active magneto-plasmonics in hybrid metal–ferromagnet structures , 2010 .

[191]  M. Orrit,et al.  Optical detection of single non-absorbing molecules using the surface plasmon resonance of a gold nanorod. , 2012, Nature nanotechnology.

[192]  Dong Liu,et al.  Photoreduction of CO2 using copper-decorated TiO2 nanorod films with localized surface plasmon behavior , 2012 .

[193]  T. Mokari,et al.  Studying the chemical, optical and catalytic properties of noble metal (Pt, Pd, Ag, Au)–Cu2O core–shell nanostructures grown via a general approach , 2013 .

[194]  Zhong Lin Wang,et al.  Synthesis of Tetrahexahedral Platinum Nanocrystals with High-Index Facets and High Electro-Oxidation Activity , 2007, Science.

[195]  N. Halas,et al.  Tailoring plasmonic substrates for surface enhanced spectroscopies. , 2008, Chemical Society reviews.

[196]  H. Atwater,et al.  Plasmonics for improved photovoltaic devices. , 2010, Nature materials.

[197]  Yu‐Guo Guo,et al.  Au-Cu alloy bridged synthesis and optoelectronic properties of Au@CuInSe2 core-shell hybrid nanostructures , 2012 .

[198]  Ting Yang,et al.  Au-CdS Core-Shell Nanocrystals with Controllable Shell Thickness and Photoinduced Charge Separation Property , 2008 .

[199]  Jian-Feng Li,et al.  Synthesis of ultrathin and compact Au@MnO2 nanoparticles for shell-isolated nanoparticle-enhanced Raman spectroscopy (SHINERS) , 2012 .

[200]  A. Belchior,et al.  Gold nanoparticles in ancient and contemporary ruby glass , 2008 .

[201]  Naomi J. Halas,et al.  Photodetection with Active Optical Antennas , 2011, Science.

[202]  M. H. Yeung,et al.  A general approach to the synthesis of gold-metal sulfide core-shell and heterostructures. , 2009, Angewandte Chemie.

[203]  Jia Guo,et al.  Fe3O4@Carbon Microsphere Supported Ag–Au Bimetallic Nanocrystals with the Enhanced Catalytic Activity and Selectivity for the Reduction of Nitroaromatic Compounds , 2012 .

[204]  Natalia Del Fatti,et al.  Absorption properties of metal-semiconductor hybrid nanoparticles. , 2011, ACS nano.

[205]  Yichun Liu,et al.  In situ assembly of well-dispersed Au nanoparticles on TiO2/ZnO nanofibers: a three-way synergistic heterostructure with enhanced photocatalytic activity. , 2012, Journal of hazardous materials.

[206]  Yuanyuan Luo,et al.  Facile one-step synthesis of plasmonic/magnetic core/shell nanostructures and their multifunctionality , 2012 .

[207]  Younan Xia,et al.  Shape‐Controlled Synthesis of Metal Nanostructures: The Case of Palladium , 2007 .

[208]  Kuei-Hsien Chen,et al.  Plasmonic Ag@Ag3(PO4)1−x nanoparticle photosensitized ZnO nanorod-array photoanodes for water oxidation , 2012 .

[209]  Jiangtian Li,et al.  Photocatalytic activity enhanced by plasmonic resonant energy transfer from metal to semiconductor. , 2012, Journal of the American Chemical Society.

[210]  H. García,et al.  Photocatalytic CO(2) reduction using non-titanium metal oxides and sulfides. , 2013, ChemSusChem.

[211]  H. Ramanarayan,et al.  Anisotropic growth of titania onto various gold nanostructures: synthesis, theoretical understanding, and optimization for catalysis. , 2011, Angewandte Chemie.

[212]  Luis M Liz-Marzán,et al.  Shape control in gold nanoparticle synthesis. , 2008, Chemical Society reviews.

[213]  Li Zhang,et al.  Geometry control and optical tunability of metal-cuprous oxide core-shell nanoparticles. , 2012, ACS nano.

[214]  M. Jaroniec,et al.  Nitrogen self-doped nanosized TiO2 sheets with exposed {001} facets for enhanced visible-light photocatalytic activity. , 2011, Chemical communications.

[215]  Zhi Wei Seh,et al.  Janus Au‐TiO2 Photocatalysts with Strong Localization of Plasmonic Near‐Fields for Efficient Visible‐Light Hydrogen Generation , 2012, Advanced materials.

[216]  Lei Wang,et al.  Plasmonics and enhanced magneto-optics in core-shell co-ag nanoparticles. , 2011, Nano letters.

[217]  N. Petkov,et al.  Semiconductor Nanowire Fabrication by Bottom-Up and Top-Down Paradigms , 2012 .

[218]  Jiaguo Yu,et al.  H2WO4·H2O/Ag/AgCl Composite Nanoplates: A Plasmonic Z-Scheme Visible-Light Photocatalyst , 2011 .

[219]  Harry A. Atwater,et al.  Low-Loss Plasmonic Metamaterials , 2011, Science.

[220]  U. Banin,et al.  Au growth on semiconductor nanorods: photoinduced versus thermal growth mechanisms. , 2009, Journal of the American Chemical Society.

[221]  Jiaguo Yu,et al.  Preparation, characterization and visible-light-driven photocatalytic activity of Fe-doped titania nanorods and first-principles study for electronic structures , 2009 .

[222]  F. J. Morin,et al.  Oxides Which Show a Metal-to-Insulator Transition at the Neel Temperature , 1959 .

[223]  Qiaoqiang Gan,et al.  Plasmonic‐Enhanced Organic Photovoltaics: Breaking the 10% Efficiency Barrier , 2013, Advanced materials.

[224]  Z. Seh,et al.  Titania-coated metal nanostructures. , 2012, Chemistry, an Asian journal.

[225]  Chunzhong Li,et al.  Multifunctional Fe3O4@Ag/SiO2/Au core-shell microspheres as a novel SERS-activity label via long-range plasmon coupling. , 2013, Langmuir : the ACS journal of surfaces and colloids.

[226]  Ting Yang,et al.  Interfacial Charge Carrier Dynamics in Core-Shell Au-CdS Nanocrystals , 2010 .

[227]  Xiaohan Liu,et al.  Facile Synthesis of Monodisperse Superparamagnetic Fe3O4 Core@hybrid@Au Shell Nanocomposite for Bimodal Imaging and Photothermal Therapy , 2011, Advanced materials.

[228]  H. Schobert,et al.  Photoinduced activation of CO2 on Ti-based heterogeneous catalysts: Current state, chemical physics-based insights and outlook , 2009 .

[229]  M. Mohamed,et al.  Laser assisted photocatalytic reduction of metal ions by graphene oxide , 2011 .

[230]  S. Gwo,et al.  Facet-dependent and au nanocrystal-enhanced electrical and photocatalytic properties of Au-Cu2O core-shell heterostructures. , 2011, Journal of the American Chemical Society.

[231]  Y. Hsu,et al.  L-cysteine-assisted growth of core-satellite ZnS-Au nanoassemblies with high photocatalytic efficiency. , 2010, Langmuir : the ACS journal of surfaces and colloids.

[232]  Uri Banin,et al.  Colloidal hybrid nanostructures: a new type of functional materials. , 2010, Angewandte Chemie.

[233]  W. Tremel,et al.  Phase separated Cu@Fe3O4 heterodimer nanoparticles from organometallic reactants , 2011 .

[234]  Giorgio Volpe,et al.  Unidirectional Emission of a Quantum Dot Coupled to a Nanoantenna , 2010, Science.

[235]  B. Ren,et al.  Distinctive Enhanced and Tunable Plasmon Resonant Absorption from Controllable Au@Cu2O Nanoparticles: Experimental and Theoretical Modeling , 2012 .

[236]  H. Fujiwara,et al.  Back surface reflectors with periodic textures fabricated by self-ordering process for light trapping in thin-film microcrystalline silicon solar cells , 2009 .

[237]  Z. Tang,et al.  Facile synthesis of core–shell Au@CeO2 nanocomposites with remarkably enhanced catalytic activity for CO oxidation , 2012 .

[238]  P. Nordlander,et al.  Plasmons in strongly coupled metallic nanostructures. , 2011, Chemical reviews.

[239]  K. Kalantar-zadeh,et al.  Decoration of TiO2 nanotubes with metal nanoparticles using polyoxometalate as a UV-switchable reducing agent for enhanced visible and solar light photocatalysis. , 2012, Langmuir : the ACS journal of surfaces and colloids.

[240]  A. Diaspro,et al.  Plasmon bleaching dynamics in colloidal gold-iron oxide nanocrystal heterodimers. , 2012, Nano letters.

[241]  A Paul Alivisatos,et al.  Tunable localized surface plasmon resonances in tungsten oxide nanocrystals. , 2012, Journal of the American Chemical Society.

[242]  Masayuki Kanehara,et al.  Indium tin oxide nanoparticles with compositionally tunable surface plasmon resonance frequencies in the near-IR region. , 2009, Journal of the American Chemical Society.

[243]  A. Fujishima,et al.  Electrochemical Photolysis of Water at a Semiconductor Electrode , 1972, Nature.

[244]  Tuqiao Zhang,et al.  Preparation of SiO2@Au@TiO2 core–shell nanostructures and their photocatalytic activities under visible light irradiation , 2013 .

[245]  A I Lichtenstein,et al.  Dynamical singlets and correlation-assisted Peierls transition in VO2. , 2005, Physical review letters.

[246]  U. Banin,et al.  Ultrafast photoinduced charge separation in metal-semiconductor nanohybrids. , 2012, ACS nano.

[247]  Song Jin,et al.  Quantum dot nanoscale heterostructures for solar energy conversion. , 2013, Chemical Society reviews.

[248]  S. Maier,et al.  Plasmonic nanoantennas: fundamentals and their use in controlling the radiative properties of nanoemitters. , 2011, Chemical reviews.

[249]  Photocatalytic CO2 reduction by TiO2 and related titanium containing solids , 2012 .

[250]  M. S. El-shall,et al.  Ultrasmall gold nanoparticles anchored to graphene and enhanced photothermal effects by laser irradiation of gold nanostructures in graphene oxide solutions. , 2013, ACS nano.

[251]  G. Stucky,et al.  Plasmonic photoanodes for solar water splitting with visible light. , 2012, Nano letters.

[252]  Sang-Ho Kim,et al.  Effects of TiO2 shells on optical and thermal properties of silver nanowires , 2012 .

[253]  Martin Moskovits,et al.  An autonomous photosynthetic device in which all charge carriers derive from surface plasmons. , 2013, Nature nanotechnology.

[254]  Xiaohua Huang,et al.  Gold Nanorods: From Synthesis and Properties to Biological and Biomedical Applications , 2009, Advanced materials.

[255]  Min Gu,et al.  Five-dimensional optical recording mediated by surface plasmons in gold nanorods , 2009, Nature.

[256]  S. Linic,et al.  Plasmonic-metal nanostructures for efficient conversion of solar to chemical energy. , 2011, Nature materials.

[257]  Hyunwoong Park,et al.  Surface modification of TiO2 photocatalyst for environmental applications , 2013 .

[258]  Weihai Ni,et al.  Tailoring longitudinal surface plasmon wavelengths, scattering and absorption cross sections of gold nanorods. , 2008, ACS nano.

[259]  Mietek Jaroniec,et al.  Tunable photocatalytic selectivity of hollow TiO2 microspheres composed of anatase polyhedra with exposed {001} facets. , 2010, Journal of the American Chemical Society.

[260]  Bing Liu,et al.  Synthesis of Ag(2) S-Ag nanoprisms and their use as DNA hybridization probes. , 2011, Small.

[261]  Brian F. G. Johnson,et al.  Selective oxidation with dioxygen by gold nanoparticle catalysts derived from 55-atom clusters , 2008, Nature.

[262]  Laisen Wang,et al.  Au-ZnO hybrid nanoflowers, nanomultipods and nanopyramids: one-pot reaction synthesis and photocatalytic properties. , 2014, Nanoscale.

[263]  A. Rogach,et al.  Narrow bandgap colloidal metal chalcogenide quantum dots: synthetic methods, heterostructures, assemblies, electronic and infrared optical properties. , 2013, Chemical Society reviews.

[264]  Tian Ming,et al.  Heteroepitaxial growth of high-index-faceted palladium nanoshells and their catalytic performance. , 2011, Journal of the American Chemical Society.

[265]  Shuling Shen,et al.  Rational Tuning the Optical Properties of Metal Sulfide Nanocrystals and Their Applications , 2013 .

[266]  Ming Lun Tseng,et al.  Plasmon inducing effects for enhanced photoelectrochemical water splitting: X-ray absorption approach to electronic structures. , 2012, ACS nano.

[267]  Tobias Steinle,et al.  Nonreciprocal plasmonics enables giant enhancement of thin-film Faraday rotation , 2013, Nature Communications.

[268]  Adah Almutairi,et al.  Photochemical mechanisms of light-triggered release from nanocarriers. , 2012, Advanced drug delivery reviews.

[269]  Y. Chen,et al.  Carrier transfer induced photoluminescence change in metal-semiconductor core-shell nanostructures , 2006 .

[270]  Zhenhua Sun,et al.  One-pot synthesis of (Au nanorod)-(metal sulfide) core-shell nanostructures with enhanced gas-sensing property. , 2012, Small.

[271]  Peng Wang,et al.  Plasmonic gold nanocrystals coupled with photonic crystal seamlessly on TiO2 nanotube photoelectrodes for efficient visible light photoelectrochemical water splitting. , 2013, Nano letters.

[272]  Ashutosh K. Singh,et al.  Enhanced band gap emission and ferromagnetism of Au nanoparticle decorated α-Fe2O3 nanowires due to surface plasmon and interfacial effects , 2013 .

[273]  Jimin Xie,et al.  Photoenhanced degradation of rhodamine blue on monometallic gold (Au) loaded brookite titania photocatalysts activated by visible light , 2012, Reaction Kinetics, Mechanisms and Catalysis.

[274]  E. Shevchenko,et al.  Au-PbS core-shell nanocrystals: plasmonic absorption enhancement and electrical doping via intra-particle charge transfer. , 2008, Journal of the American Chemical Society.

[275]  Z. Seh,et al.  Synthesis and multiple reuse of eccentric Au@TiO2 nanostructures as catalysts. , 2011, Chemical communications.

[276]  Charles A. Schmuttenmaer,et al.  Plasmonic Enhancement of Dye-Sensitized Solar Cells Using Core− Shell−Shell Nanostructures , 2013 .

[277]  J. Bang,et al.  Synthesis of gold-coated TiO2 nanorod array and its application as a Raman substrate , 2013 .

[278]  Shouheng Sun,et al.  Dumbbell-like bifunctional Au-Fe3O4 nanoparticles. , 2005, Nano letters.

[279]  Kui‐Qing Peng,et al.  Silicon Nanowires for Photovoltaic Solar Energy Conversion , 2011, Advanced materials.

[280]  Hervé Rigneault,et al.  A plasmonic 'antenna-in-box' platform for enhanced single-molecule analysis at micromolar concentrations. , 2013, Nature nanotechnology.

[281]  Ilkeun Lee,et al.  Core-shell nanostructured catalysts. , 2013, Accounts of chemical research.

[282]  N. Hewa-Kasakarage,et al.  Tuning the Morphology of Au/CdS Nanocomposites through Temperature-Controlled Reduction of Gold-Oleate Complexes , 2010 .

[283]  Tian Ming,et al.  Growth of tetrahexahedral gold nanocrystals with high-index facets. , 2009, Journal of the American Chemical Society.

[284]  J. Ying,et al.  Room-temperature synthesis of nanocrystalline Ag2S and its nanocomposites with gold. , 2009, Chemical communications.

[285]  F. Schüth,et al.  Activity improvement of gold yolk–shell catalysts for CO oxidation by doping with TiO 2 , 2011 .

[286]  Ping Wang,et al.  Dual-functional Au-Fe3O4 dumbbell nanoparticles for sensitive and selective turn-on fluorescent detection of cyanide based on the inner filter effect. , 2011, Chemical communications.

[287]  Hongmei Luo,et al.  Generalized synthesis of hybrid metal-semiconductor nanostructures tunable from the visible to the infrared. , 2012, ACS nano.

[288]  Ling Zhang,et al.  Photocatalysis Coupled with Thermal Effect Induced by SPR on Ag-Loaded Bi2WO6 with Enhanced Photocatalytic Activity , 2012 .

[289]  Lirong Zheng,et al.  Ag/ZnO heterostructure nanocrystals: synthesis, characterization, and photocatalysis. , 2007, Inorganic chemistry.

[290]  Jiaguo Yu,et al.  Surface plasmon resonance-mediated photocatalysis by noble metal-based composites under visible light , 2012 .

[291]  J. C. Banthí,et al.  High Magneto‐Optical Activity and Low Optical Losses in Metal‐Dielectric Au/Co/Au–SiO2 Magnetoplasmonic Nanodisks , 2012, Advanced materials.