The measurement of gain in a supersonic, combustion-driven generator for NCl(a1Δ)

The measurement of positive small signal gain on the 1.315 micron spin orbit transition of atomic iodine following energy transfer from chemically generated NCl(a1Δ) is reported. Previous instances of gain produced by energy transfer from NCl(a1Δ) used DC discharges to generate F and Cl atoms; this report describes recent progress towards a true chemical laser device which uses a high temperature chemical combustor and a supersonic reactor to generate NCl(a1Δ). These improvements represent a significant step towards the development and demonstration of a scalable All Gas-phase Iodine Laser (AGIL) device.

[1]  Michael C. Heaven,et al.  Kinetic spectroscopy of NCl , 2000, LASE.

[2]  Michael C. Heaven,et al.  Diode laser-based diagnostic for NCl(X) , 2003, SPIE LASE.

[3]  D. Setser,et al.  Chemical Kinetics of the Azide Radical: Rate Constants for Reactions with Cl, NO, NO2, O2, CO, CO2, Cl2, and C3H6 , 1998 .

[4]  Liping Duo,et al.  Parametric study of NCl(a1Δ, NCl(b1Σfrom the reaction of Cl/Cl2/He + HN3/He , 2002, SPIE LASE.

[5]  Gerald C. Manke,et al.  Kinetics of NCl(a 1 Δ and b 1 Σ + ) Generation: The Cl + N 3 Rate Constant, the NCl(a 1 Δ) Product Branching Fraction, and Quenching of NCl(a 1 Δ) by F and Cl Atoms , 1998 .

[6]  Gerald C. Manke,et al.  Measuring Gas-Phase Chlorine Atom Concentrations: Rate Constants for Cl + HN3, CF3I, and C2F5I , 1998 .

[7]  William J. Kessler,et al.  Collisional broadening of absorption lines in water vapor and atomic iodine relevant to COIL diagnostics , 1999, Photonics West.

[8]  Julanna V. Gilbert,et al.  Generation of excited nitrogen monochloride by the reaction of hydrogen atoms with nitrogen trichloride , 1991 .

[9]  Gordon D. Hager,et al.  A New Energy Transfer Chemical Laser at 1.315 Microns , 2000 .

[10]  Gordon D. Hager,et al.  A Multi-Watt All Gas-Phase Iodine Laser (AGIL) , 2003 .

[11]  Thomas L. Henshaw,et al.  Temperature Dependence of the NCl(a1Δ) + I (2P3/2) Reaction from 300 to 482 K , 1998 .

[12]  D. Setser,et al.  Quenching rate constants for NCl(b 1Σ+) and PCl(b 1Σ+) and radiative lifetimes of NCl(b 1Σ+), PCl(b 1Σ+) and PBr(b 1Σ+) , 1995 .

[13]  M. Heaven Chemical Dynamics in Chemical Laser Media , 2001 .

[14]  Gerald C. Manke,et al.  Temperature dependence of the Cl+HN3 reaction from 300 to 480 K , 1999 .

[15]  William J. Kessler,et al.  Progress in the development of sensors for COIL devices , 2000, LASE.

[16]  Gerald C. Manke,et al.  Quenching Rate Constants of NCl(a1Δ) at Room Temperature , 2000 .

[17]  Gerald C. Manke,et al.  Recent Progress in the Development of a Multi-Watt All Gas-Phase Iodine Laser (AGIL) , 2002 .

[18]  Brent D. Rafferty,et al.  Characterizing Fluorine and Chlorine Atom Flow Rates Using , 2001 .

[19]  R. D. Coombe,et al.  An I* laser pumped by NCl(a1.DELTA.) , 1995 .

[20]  R. Bower,et al.  I( 2 P 1/2 ) produced by the energy transfer from NCl(a 1 Δ) to I( 2 P 3/2 ) , 1991 .

[21]  William E. McDermott Historical perspective of COIL , 2002, SPIE LASE.

[22]  Gordon D. Hager,et al.  The measurement of gain on the 1.315 μm transition of atomic iodine in a subsonic flow of chemically generated NCl(a1Δ) , 1999 .

[23]  Temperature-Dependent Quenching Rate Constants of NF(a1Δ) , 2000 .

[24]  A. MacRobert,et al.  Kinetics of metastable singlet NCl radicals , 1983 .

[25]  R. D. Coombe,et al.  Energy transfer from chloroimidogen (a1.DELTA.) to iodine atoms , 1993 .

[26]  Gordon D. Hager,et al.  A multiwatt all gas-phase iodine laser (AGIL) , 2003 .

[27]  R. D. Coombe,et al.  NCl(a1Δ) and I(52P12) production in a D/NCl3/HI transverse flow reactor , 1993 .

[28]  David J. Benard,et al.  An electronic transition chemical laser , 1978 .

[29]  R. Gaylord unpublished results , 1985 .

[30]  Alexander J. MacRobert,et al.  ELEMENTARY REACTIONS OF THE NCL RADICAL .2. KINETICS OF THE NCL+CLO AND NCL+NO REACTIONS , 1985 .

[31]  D. Stedman,et al.  Photolysis of nitrogen trichloride , 1987 .

[32]  L. Rubin,et al.  Population inversion between I((2)P(1/2)) and I((2)P(3/2)) of atomic iodine generated by the energy transfer from NCl(a(1)Delta) to I((2)P(3/2)). , 1992, Optics letters.

[33]  D. Setser,et al.  Quenching rate constants of nitrogen monofluoride(a1.DELTA.) at room temperature , 1990 .

[34]  U. Schurath,et al.  Matrix-isolated NCl. Radiative rates for b 1Π+→a 1Δ, b 1Σ+→X 3Σ− and a 1Δ→X 3Σ− in solid argon , 1987 .

[35]  Thomas L. Henshaw,et al.  Kinetics of NCl(a1Δ) via Photodissociation of ClN3 , 1997 .