Formation of precessing jets by tilted black hole discs in 3D general relativistic MHD simulations

Gas falling into a black hole (BH) from large distances is unaware of BH spin direction, and misalignment between the accretion disc and BH spin is expected to be common. However, the physics of tilted discs (e.g. angular momentum transport and jet formation) is poorly understood. Using our new GPU-accelerated code h-amr, we performed 3D general relativistic magnetohydrodynamic simulations of tilted thick accretion discs around rapidly spinning BHs, at the highest resolution to date. We explored the limit where disc thermal pressure dominates magnetic pressure, and showed for the first time that, for different magnetic field strengths on the BH, these flows launch magnetized relativistic jets propagating along the rotation axis of the tilted disc (rather than of the BH). If strong large-scale magnetic flux reaches the BH, it bends the inner few gravitational radii of the disc and jets into partial alignment with the BH spin. On longer time-scales, the simulated disc–jet system as a whole undergoes Lense–Thirring precession and approaches alignment, demonstrating for the first time that jets can be used as probes of disc precession. When the disc turbulence is well resolved, our isolated discs spread out, causing both the alignment and precession to slow down.

[1]  J. Krolik,et al.  RELAXATION OF WARPED DISKS: THE CASE OF PURE HYDRODYNAMICS , 2013, 1303.5465.

[2]  Harvard,et al.  Efficient Generation of Jets from Magnetically Arrested Accretion on a Rapidly Spinning Black Hole , 2011, 1108.0412.

[3]  Jay D. Salmonson,et al.  APPLICATION OF THE CUBED-SPHERE GRID TO TILTED BLACK HOLE ACCRETION DISKS , 2009 .

[4]  D. Lin,et al.  Theory of Accretion Disks I: Angular Momentum Transport Processes , 1995 .

[5]  R. Dodson,et al.  ERRATIC JET WOBBLING IN THE BL LACERTAE OBJECT OJ287 REVEALED BY SIXTEEN YEARS OF 7 mm VLBA OBSERVATIONS , 2011, 1112.4747.

[6]  P. Polko,et al.  Electromagnetic vs. Lense-Thirring alignment of black hole accretion discs , 2015, 1512.07969.

[7]  Mario Vietri,et al.  Lense-Thirring Precession and Quasi-periodic Oscillations in Low-Mass X-Ray Binaries , 1997, astro-ph/9709085.

[8]  R. Blandford,et al.  Alignment of Magnetized Accretion Disks and Relativistic Jets with Spinning Black Holes , 2012, Science.

[9]  Aligning spinning black holes and accretion discs , 2005, astro-ph/0507098.

[10]  Diego Altamirano,et al.  A quasi-periodic modulation of the iron line centroid energy in the black hole binary H1743−322 , 2016, 1607.02866.

[11]  R. Ekers,et al.  NGC326—a radio galaxy with a precessing beam? , 1978, Nature.

[12]  J. Stone,et al.  An unsplit Godunov method for ideal MHD via constrained transport , 2005, astro-ph/0501557.

[13]  E. Ros,et al.  MOJAVE. XIII. PARSEC-SCALE AGN JET KINEMATICS ANALYSIS BASED ON 19 YEARS OF VLBA OBSERVATIONS AT 15 GHz , 2016, 1603.03882.

[14]  Nathaniel R. Butler,et al.  A Possible Relativistic Jetted Outburst from a Massive Black Hole Fed by a Tidally Disrupted Star , 2011, Science.

[15]  Zulema Abraham,et al.  Warping and Precession in Galactic and Extragalactic Accretion Disks , 2006, astro-ph/0608398.

[16]  J. Papaloizou,et al.  The time-dependence of non-planar accretion discs , 1983 .

[17]  A. Tchekhovskoy,et al.  General Relativistic Modeling of Magnetized Jets from Accreting Black Holes , 2012, 1202.2864.

[18]  E. Ros,et al.  Detection of jet precession in the active nucleus of M 81 , 2011, 1107.0704.

[19]  V. Beskin,et al.  The effective acceleration of plasma outflow in the paraboloidal magnetic field , 2006 .

[20]  Charles F. Gammie,et al.  HARM: A NUMERICAL SCHEME FOR GENERAL RELATIVISTIC MAGNETOHYDRODYNAMICS , 2003 .

[21]  S. Markoff,et al.  Going with the Flow: Can the Base of Jets Subsume the Role of Compact Accretion Disk Coronae? , 2005, astro-ph/0509028.

[22]  R. M. Hjellming,et al.  Episodic ejection of relativistic jets by the X-ray transient GRO J1655 - 40 , 1995, Nature.

[23]  S. Lubow,et al.  On the Tilting of Protostellar Disks by Resonant Tidal Effects , 2000, astro-ph/0003028.

[24]  R. Narayan,et al.  GRMHD simulations of magnetized advection‐dominated accretion on a non‐spinning black hole: role of outflows , 2012, 1206.1213.

[25]  J. Font,et al.  Numerical relativity simulations of thick accretion disks around tilted Kerr black holes , 2015, 1506.04056.

[26]  P. Anninos,et al.  Hydrodynamic Simulations of Tilted Thick-Disk Accretion onto a Kerr Black Hole , 2004, astro-ph/0403356.

[27]  Princeton,et al.  General relativistic magnetohydrodynamic simulations of magnetically choked accretion flows around black holes , 2012, 1201.4163.

[28]  Hydrodynamic simulations of the Bardeen–Petterson effect , 2000, astro-ph/0001439.

[29]  O. Blaes,et al.  Global General Relativistic Magnetohydrodynamic Simulation of a Tilted Black Hole Accretion Disk , 2007, 0706.4303.

[30]  K. I. Kellermann,et al.  MOJAVE. X. PARSEC-SCALE JET ORIENTATION VARIATIONS AND SUPERLUMINAL MOTION IN ACTIVE GALACTIC NUCLEI , 2013, 1308.2713.

[31]  A. Tchekhovskoy Launching of Active Galactic Nuclei Jets , 2015 .

[32]  Lawrence E. Kidder,et al.  Black hole-neutron star mergers: Effects of the orientation of the black hole spin , 2010, 1007.4203.

[33]  V. Moncrief,et al.  Relativistic fluid disks in orbit around Kerr black holes , 1976 .

[34]  A. Tchekhovskoy,et al.  The disc-jet symbiosis emerges: Modelling the emission of Sagittarius A* with electron thermodynamics , 2016, 1611.09365.

[35]  A. Loeb,et al.  Observing Lense-Thirring precession in tidal disruption flares. , 2011, Physical review letters.

[36]  R. Strom,et al.  Structure and polarization of jets in the giant radio galaxy NGC 315 , 1979 .

[37]  C. Gammie,et al.  Primitive Variable Solvers for Conservative General Relativistic Magnetohydrodynamics , 2005, astro-ph/0512420.

[38]  R. Blandford,et al.  Electromagnetic extraction of energy from Kerr black holes , 1977 .

[39]  C. Reynolds,et al.  HOW AGN JETS HEAT THE INTRACLUSTER MEDIUM—INSIGHTS FROM HYDRODYNAMIC SIMULATIONS , 2016, 1605.01725.

[40]  General relativistic magnetohydrodynamic simulations of the jet formation and large-scale propagation from black hole accretion systems , 2006, astro-ph/0603045.

[41]  T. Maccarone,et al.  Detection of the first infra-red quasi-periodic oscillation in a black hole X-ray binary. , 2015, 1510.08907.

[42]  Columbia,et al.  Swift J1644+57 gone MAD: the case for dynamically-important magnetic flux threading the black hole in a jetted tidal disruption event , 2013, 1301.1982.

[43]  T. Maccarone,et al.  POLARIZATION MODULATION FROM LENSE–THIRRING PRECESSION IN X-RAY BINARIES , 2015, 1505.00015.

[44]  The evolution of a warped disc around a Kerr black hole , 2002, astro-ph/0208206.

[45]  Princeton,et al.  Three-dimensional relativistic MHD simulations of active galactic nuclei jets: magnetic kink instability and Fanaroff–Riley dichotomy , 2015, 1512.04526.

[46]  A. Tchekhovskoy,et al.  Simulations of ultrarelativistic magnetodynamic jets from gamma‐ray burst engines , 2008, 0803.3807.

[47]  Magnetically Arrested Disk : an Energetically Efficient Accretion Flow , 2003, astro-ph/0305029.

[48]  Hans Thirring,et al.  ber die Wirkung rotierender ferner Massen in der Einsteinschen Gravitationstheorie. , 1918 .

[49]  Stanford,et al.  Prograde and retrograde black holes: whose jet is more powerful? , 2012, 1201.4385.

[50]  P. Ivanov,et al.  THE OSCILLATORY SHAPE OF THE STATIONARY TWISTED DISC AROUND A KERR BLACK HOLE , 1997 .

[51]  P. Chris Fragile,et al.  Low-frequency quasi-periodic oscillations spectra and Lense–Thirring precession , 2009 .

[52]  R. Sutherland,et al.  Jet-intracluster medium interaction in hydra A - II. The effect of jet precession , 2016, 1602.02969.

[53]  J. Hawley,et al.  A powerful local shear instability in weakly magnetized disks. I - Linear analysis. II - Nonlinear evolution , 1990 .