Bayesian regularisation in geoadditive expectile regression
暂无分享,去创建一个
Thomas Kneib | Elisabeth Waldmann | Fabian Sobotka | E. Waldmann | T. Kneib | Fabian Sobotka | Elisabeth Waldmann
[1] Debashis Paul,et al. Zero Expectile Processes and Bayesian Spatial Regression , 2016 .
[2] Linda Schulze Waltrup,et al. Expectile and quantile regression—David and Goliath? , 2015 .
[3] Hui Zou,et al. Nonparametric multiple expectile regression via ER-Boost , 2015 .
[4] Cathy W. S. Chen,et al. Bayesian Expected Shortfall Forecasting Incorporating the Intraday Range , 2014 .
[5] R Core Team,et al. R: A language and environment for statistical computing. , 2014 .
[6] Yu Ryan Yue,et al. For a list of recent papers see the backpages of this paper. Bayesian Semiparametric Additive Quantile Regression , 2022 .
[7] Ludwig Fahrmeir,et al. Regression: Models, Methods and Applications , 2013 .
[8] Johanna F. Ziegel,et al. COHERENCE AND ELICITABILITY , 2013, 1303.1690.
[9] Rosalba Radice,et al. Estimating the relationship between women's education and fertility in Botswana by using an instrumental variable approach to semiparametric expectile regression , 2013 .
[10] H. Zou,et al. A coordinate majorization descent algorithm for ℓ1 penalized learning , 2014 .
[11] A. Gelfand,et al. Spatial Quantile Multiple Regression Using the Asymmetric Laplace Process , 2012 .
[12] Thomas Kneib,et al. Geoadditive expectile regression , 2012, Comput. Stat. Data Anal..
[13] Göran Kauermann,et al. On confidence intervals for semiparametric expectile regression , 2013, Stat. Comput..
[14] Torsten Hothorn,et al. Identifying Risk Factors for Severe Childhood Malnutrition by Boosting Additive Quantile Regression , 2011 .
[15] R. Ramamoorthi,et al. Posterior Consistency of Bayesian Quantile Regression Under a Mis-Specified Likelihood Based on Asymmetric Laplace Density , 2011 .
[16] H. Kozumi,et al. Gibbs sampling methods for Bayesian quantile regression , 2011 .
[17] Yu Ryan Yue,et al. Bayesian inference for additive mixed quantile regression models , 2011, Comput. Stat. Data Anal..
[18] Ludwig Fahrmeir,et al. Bayesian regularisation in structured additive regression: a unifying perspective on shrinkage, smoothing and predictor selection , 2010, Stat. Comput..
[19] H. Bondell,et al. Flexible Bayesian quantile regression for independent and clustered data. , 2010, Biostatistics.
[20] Paul H. C. Eilers,et al. Optimal expectile smoothing , 2009, Comput. Stat. Data Anal..
[21] Andrew Harvey,et al. Quantiles, expectiles and splines , 2009 .
[22] Keming Yu,et al. A partially collapsed Gibbs sampler for Bayesian quantile regression , 2009 .
[23] James W. Taylor. Estimating Value at Risk and Expected Shortfall Using Expectiles , 2007 .
[24] R. Koenker,et al. Regression Quantiles , 2007 .
[25] Andreas Brezger,et al. Generalized structured additive regression based on Bayesian P-splines , 2006, Comput. Stat. Data Anal..
[26] L. Fahrmeir,et al. PENALIZED STRUCTURED ADDITIVE REGRESSION FOR SPACE-TIME DATA: A BAYESIAN PERSPECTIVE , 2004 .
[27] V. Chernozhukov,et al. An MCMC Approach to Classical Estimation , 2002, 2301.07782.
[28] Keming Yu,et al. Bayesian quantile regression , 2001 .
[29] Ludwig Fahrmeir,et al. Semiparametric Analysis of the Socio-Demographic and Spatial Determinants of Undernutrition in Two African Countries , 2001 .
[30] Paul H. C. Eilers,et al. Flexible smoothing with B-splines and penalties , 1996 .
[31] R. Tibshirani. Regression Shrinkage and Selection via the Lasso , 1996 .
[32] H. Tong,et al. Asymmetric least squares regression estimation: A nonparametric approach ∗ , 1996 .
[33] Pin T. Ng,et al. Quantile smoothing splines , 1994 .
[34] W. Newey,et al. Asymmetric Least Squares Estimation and Testing , 1987 .