Modeling Frequency Comb Sources

Abstract Frequency comb sources have revolutionized metrology and spectroscopy and found applications in many fields. Stable, low-cost, high-quality frequency comb sources are important to these applications. Modeling of the frequency comb sources will help the understanding of the operation mechanism and optimization of the design of such sources. In this paper,we review the theoretical models used and recent progress of the modeling of frequency comb sources.

[1]  Robert R. Alfano,et al.  The Supercontinuum Laser Source: Fundamentals with Updated References , 2006 .

[2]  Albert Schliesser,et al.  Mid-infrared frequency combs , 2012, Nature Photonics.

[3]  Lorenzo Pavesi,et al.  Ultrafast all-optical switching in a silicon-nanocrystal-based silicon slot waveguide at telecom wavelengths. , 2010, Nano letters.

[4]  Zhipei Sun,et al.  Nanotube and graphene saturable absorbers for fibre lasers , 2013, Nature Photonics.

[5]  K. Tsia,et al.  Investigating the influence of a weak continuous-wave-trigger on picosecond supercontinuum generation. , 2011, Optics express.

[6]  Yulong Tang,et al.  Compact Split Disk Laser With SiC Wafer and ${\rm Nd}{:}{\rm YVO}_{4}$ Bonding via Liquid Capillarity , 2013, IEEE Journal of Quantum Electronics.

[7]  Dai Yoshitomi,et al.  Generation of 28-fs pulses from a mode-locked ytterbium fiber oscillator. , 2008, Optics express.

[8]  Steven T. Cundiff,et al.  Phase stabilization of ultrashort optical pulses , 2002 .

[9]  C. Cruz,et al.  Spectral narrowing in the propagation of chirped pulses in single-mode fibers. , 1993, Optics letters.

[10]  A. Matsko,et al.  Mode-locked Kerr frequency combs. , 2011, Optics letters.

[11]  J. Soto-Crespo,et al.  Composite solitons and two-pulse generation in passively mode-locked lasers modeled by the complex quintic Swift-Hohenberg equation. , 2002, Physical review. E, Statistical, nonlinear, and soft matter physics.

[12]  R. Morandotti,et al.  New CMOS-compatible platforms based on silicon nitride and Hydex for nonlinear optics , 2013, Nature Photonics.

[13]  Michal Lipson,et al.  Silicon-based monolithic optical frequency comb source. , 2011, Optics express.

[14]  Jens Limpert,et al.  High quality sub-two cycle pulses from compression of supercontinuum generated in all-normal dispersion photonic crystal fiber. , 2011, Optics express.

[15]  Alexander M. Heidt,et al.  Pulse preserving flat-top supercontinuum generation in all-normal dispersion photonic crystal fibers , 2010 .

[16]  M. Rochette,et al.  Raman-induced noiselike pulses in a highly nonlinear and dispersive all-fiber ring laser. , 2013, Optics letters.

[17]  Yiqing Xu,et al.  Resonant radiation in synchronously pumped passive Kerr cavities. , 2015, Optics letters.

[18]  Qian Li,et al.  Spectral compression of chirped Gaussian pulse in nonlinear optical fibers with exponentially increasing dispersion , 2015 .

[19]  C. Menyuk,et al.  Comparison of numerical methods for modeling laser mode locking with saturable gain , 2013 .

[20]  Sergei K. Turitsyn,et al.  Amplifier similariton fibre laser with nonlinear spectral compression , 2012 .

[21]  Jurgen Michel,et al.  Nonlinear Group IV photonics based on silicon and germanium: from near-infrared to mid-infrared , 2014 .

[22]  M. Wegener,et al.  Broad bandwidths from frequency-shifting solitons in fibers. , 1989, Optics letters.

[23]  Frank W. Wise,et al.  Generation of 50-fs, 5-nJ pulses at 1.03 μm from a wave-breaking-free fiber laser , 2003 .

[24]  T. Hänsch,et al.  Optical frequency metrology , 2002, Nature.

[25]  A. Matsko,et al.  Normal group-velocity dispersion Kerr frequency comb. , 2012, Optics letters.

[26]  A. Hideur,et al.  Numerical Maps for Fiber Lasers Mode Locked with Nonlinear Polarization Evolution: Comparison with Semi-Analytical Models , 2008 .

[27]  Eli Shlizerman,et al.  Generalized Master Equation for High-Energy Passive Mode-Locking: The Sinusoidal Ginzburg–Landau Equation , 2011, IEEE Journal of Quantum Electronics.

[28]  Kunimasa Saitoh,et al.  Highly nonlinear dispersion-flattened photonic crystal fibers for supercontinuum generation in a telecommunication window. , 2004, Optics express.

[29]  José Azaña,et al.  Time-delay to intensity mapping based on a second-order optical integrator: application to optical arbitrary waveform generation. , 2015, Optics express.

[30]  Neil G. R. Broderick,et al.  Raman-driven destabilization of mode-locked long cavity fiber lasers: fundamental limitations to energy scalability. , 2013, Optics letters.

[31]  Michael H Frosz,et al.  Validation of input-noise model for simulations of supercontinuum generation and rogue waves. , 2010, Optics express.

[32]  Ingmar Hartl,et al.  Ultrafast fibre lasers , 2013, Nature Photonics.

[33]  S. Wabnitz,et al.  On the numerical simulation of Kerr frequency combs using coupled mode equations , 2013, 1307.3428.

[34]  J Nathan Kutz,et al.  High-energy mode-locked fiber lasers using multiple transmission filters and a genetic algorithm. , 2013, Optics express.

[35]  F. Lederer,et al.  Lumped versus distributed description of mode-locked fiber lasers , 2010 .

[36]  J. Dudley,et al.  Supercontinuum generation in photonic crystal fiber , 2006 .

[37]  W. Wadsworth,et al.  Coherent supercontinuum generation in photonic crystal fiber with all-normal group velocity dispersion. , 2011, Optics express.

[38]  Integrated optics: Flexible chalcogenide photonics , 2014 .

[39]  C. Menyuk,et al.  Spatiotemporal Lugiato-Lefever formalism for Kerr-comb generation in whispering-gallery-mode resonators , 2012, 1210.8210.

[40]  T. Sylvestre,et al.  Modeling of octave-spanning Kerr frequency combs using a generalized mean-field Lugiato-Lefever model. , 2012, Optics letters.

[41]  M. Gorodetsky,et al.  Universal formation dynamics and noise of Kerr-frequency combs in microresonators , 2012, Nature Photonics.

[42]  Neil G. R. Broderick,et al.  All-normal dispersion fiber lasers mode-locked with a nonlinear amplifying loop mirror , 2014 .

[43]  A. Matsko,et al.  Chaotic dynamics of frequency combs generated with continuously pumped nonlinear microresonators. , 2012, Optics letters.

[44]  P. Grelu,et al.  Dissipative soliton resonance as a guideline for high-energy pulse laser oscillators , 2010 .

[45]  S. Wabnitz,et al.  Strong spectral filtering for a mode-locked similariton fiber laser. , 2010, Optics letters.

[46]  Chongxiu Yu,et al.  CMOS-compatible 2-bit optical spectral quantization scheme using a silicon-nanocrystal-based horizontal slot waveguide , 2014, Scientific reports.

[47]  Weizhu Bao,et al.  The Nonlinear Schrödinger Equation and Applications in Bose-Einstein Condensation and Plasma Physics , 2007 .

[48]  Robert R. Alfano,et al.  Emission in the Region 4000 to 7000 Å Via Four-Photon Coupling in Glass , 1970 .

[49]  Andy Chong,et al.  Self-similar pulse evolution in an all-normal-dispersion laser. , 2010, Physical review. A, Atomic, molecular, and optical physics.

[50]  Fabian Rotermund,et al.  All-fiber Er-doped dissipative soliton laser based on evanescent field interaction with carbon nanotube saturable absorber. , 2010, Optics express.

[51]  Dumitru Mihalache,et al.  Models of few optical cycle solitons beyond the slowly varying envelope approximation , 2013 .

[52]  C R Menyuk,et al.  Soliton fiber ring laser. , 1992, Optics letters.

[53]  F. Ömer Ilday,et al.  Soliton–similariton fibre laser , 2010 .

[54]  Andy Chong,et al.  All-normal-dispersion femtosecond fiber laser with pulse energy above 20 nJ. , 2007, Optics letters.

[55]  J G Fujimoto,et al.  Nonlinear optics with phase-controlled pulses in the sub-two-cycle regime. , 2001, Physical review letters.

[56]  Jose Nathan Kutz,et al.  Geometrical description of the onset of multi-pulsing in mode-locked laser cavities , 2010 .

[57]  Eli Shlizerman,et al.  High-Energy Passive Mode-Locking of Fiber Lasers. , 2012, International journal of optics.

[58]  S. Coen,et al.  Controlled merging and annihilation of localised dissipative structures in an AC-driven damped nonlinear Schrödinger system , 2015, 1504.07231.

[59]  I. Hartl,et al.  Ultrafast Fiber Laser Technology , 2009, IEEE Journal of Selected Topics in Quantum Electronics.

[60]  Govind P. Agrawal,et al.  Nonlinear Fiber Optics , 1989 .

[61]  F. Diederich,et al.  All-optical high-speed signal processing with silicon–organic hybrid slot waveguides , 2009 .

[62]  G Genty,et al.  Nonlinear envelope equation modeling of sub-cycle dynamics and harmonic generation in nonlinear waveguides. , 2007, Optics express.

[63]  F.W. Wise,et al.  Generation of 36-femtosecond pulses from a ytterbium fiber laser , 2004, Conference on Lasers and Electro-Optics, 2004. (CLEO)..

[64]  Ole Bang,et al.  Influence of pump power and modulation instability gain spectrum on seeded supercontinuum and rogue wave generation , 2012 .

[65]  A. Mussot,et al.  Spectral broadening of a partially coherent CW laser beam in single-mode optical fibers. , 2004, Optics express.

[66]  Dynamics of a Low-Dimensional Model for Short Pulse Mode Locking , 2015 .

[67]  J G Fujimoto,et al.  Sub-two-cycle pulses from a Kerr-lens mode-locked Ti:sapphire laser. , 1999, Optics letters.

[68]  Nail Akhmediev,et al.  Stability of the pulselike solutions of the quintic complex Ginzburg-Landau equation , 1996 .

[69]  Wavelength-tunable spectral compression in a dispersion-increasing fiber. , 2011, Optics letters.

[70]  Jun Ye,et al.  Colloquium: Femtosecond optical frequency combs , 2003 .

[71]  James P. Gordon,et al.  Femtosecond distributed soliton spectrum in fibers , 1989 .

[72]  Esben Ravn Andresen,et al.  Spectral compression of femtosecond pulses in photonic crystal fibers. , 2005, Optics letters.

[73]  T. Hänsch,et al.  Laser Spectroscopy and Frequency Combs , 2013 .

[74]  Hermann A. Haus,et al.  Pulse dynamics in stretched‐pulse fiber lasers , 1995 .

[75]  G. Agrawal,et al.  Impact of two-photon absorption on self-phase modulation in silicon waveguides. , 2007, Optics letters.

[76]  Hermann A. Haus,et al.  Ultrashort-pulse fiber ring lasers , 1997 .

[77]  Marc Haelterman,et al.  Dissipative modulation instability in a nonlinear dispersive ring cavity , 1992 .

[78]  Hidemi Shigekawa,et al.  Comparison between theory and experiment of nonlinear propagation for a-few-cycle and ultrabroadband optical pulses in a fused-silica fiber , 2001 .

[79]  J. Fujimoto,et al.  Structures for additive pulse mode locking , 1991 .

[80]  J. Moores On the Ginzburg-Landau laser mode-locking model with fifth-order saturable absorber term , 1993 .

[81]  Soliton breathing induced by stimulated Raman scattering and self-steepening in octave-spanning Kerr frequency comb generation. , 2015, Optics express.

[82]  Shumin Zhang,et al.  Optimal design of higher energy dissipative-soliton fiber lasers , 2015 .

[83]  B. Jalali,et al.  Active control of rogue waves for stimulated supercontinuum generation. , 2008, Physical review letters.

[84]  A. Komarov,et al.  Theoretical analysis of the operating regime of a passively-mode-locked fiber laser through nonlinear polarization rotation , 2005 .

[85]  Pu Wang,et al.  Simulation of generation of dissipative soliton, dissipative soliton resonance and noise-like pulse in Yb-doped mode-locked fiber lasers. , 2015, Optics express.

[86]  Robert R. Alfano,et al.  Intensity effects on the stimulated four photon spectra generated by picosecond pulses in optical fibers , 1987 .

[87]  Roberto Morandotti,et al.  CMOS-compatible integrated optical hyper-parametric oscillator , 2010 .

[88]  J. Ye,et al.  Femtosecond Optical Frequency Comb: Principle, Operation and Applications , 2010 .

[89]  T. Kippenberg,et al.  Microresonator-Based Optical Frequency Combs , 2011, Science.

[90]  Yoshitomo Okawachi,et al.  Route to stabilized ultrabroadband microresonator-based frequency combs. , 2013, Optics letters.

[91]  M. Gorodetsky,et al.  Octave spanning tunable frequency comb from a microresonator. , 2011, Physical review letters.

[92]  G. New,et al.  Pseudospectral spatial-domain: a new method for nonlinear pulse propagation in the few-cycle regime with arbitrary dispersion , 2005 .

[93]  S. Babin,et al.  20 nJ 200 fs all-fiber highly chirped dissipative soliton oscillator. , 2012, Optics letters.

[94]  K. Vahala,et al.  Kerr-nonlinearity optical parametric oscillation in an ultrahigh-Q toroid microcavity. , 2004, Physical review letters.

[95]  Michal Lipson,et al.  Silicon-chip mid-infrared frequency comb generation , 2014, Nature Communications.

[96]  Theodor W. Hänsch,et al.  Measuring the frequency of light with mode-locked lasers , 1999 .

[97]  Neil G. R. Broderick,et al.  Observation of soliton explosions in a passively mode-locked fiber laser , 2014, 1409.8373.

[98]  Heinz P. Weber,et al.  Ultrashort pulse propagation, pulse breakup, and fundamental soliton formation in a single-mode optical fiber , 1987 .

[99]  T. Kippenberg,et al.  Optical frequency comb generation from a monolithic microresonator , 2007, Nature.

[100]  Anna C. Peacock,et al.  Self-similar propagation of parabolic pulses in normal-dispersion fiber amplifiers , 2002 .

[101]  Miroslav Kolesik,et al.  Simulation of femtosecond pulse propagation in sub-micron diameter tapered fibers , 2004 .

[102]  R. Holzwarth,et al.  Kippenberg Microresonator-Based Optical Frequency Combs , 2011 .

[103]  S. Diddams,et al.  Phase steps and resonator detuning measurements in microresonator frequency combs , 2014, Nature Communications.

[104]  Adrian Ankiewicz,et al.  Dissipative soliton resonances , 2008 .

[105]  Amherst Ma,et al.  Nonlinear Waves in Bose-Einstein Condensates: Physical Relevance and Mathematical Techniques , 2008 .

[106]  B. Eggleton,et al.  Harnessing and control of optical rogue waves in supercontinuum generation. , 2008, Optics express.

[107]  M. Gorodetsky,et al.  Mode spectrum and temporal soliton formation in optical microresonators. , 2013, Physical review letters.

[108]  Sergei K. Turitsyn,et al.  Mode-locked fiber lasers with significant variability of generation regimes , 2014 .

[109]  Curtis R. Menyuk,et al.  Pulse propagation in an elliptically birefringent Kerr medium , 1989 .

[110]  Chengying Bao,et al.  Generation of two-cycle pulses and octave-spanning frequency combs in a dispersion-flattened micro-resonator. , 2013, Optics letters.

[111]  Jianping Chen,et al.  41.9  fs hybridly mode-locked Er-doped fiber laser at 212  MHz repetition rate. , 2014, Optics letters.

[112]  Hermann A. Haus,et al.  Few-Cycle Pulses Directly from a Laser , 2004 .

[113]  J. Kutz,et al.  Master mode-locking theory for few-femtosecond pulses. , 2010, Optics letters.

[114]  Frank W. Wise,et al.  Generation of 42-fs and 10-nJ pulses from a fiber laser with self-similar evolution in the gain segment , 2011, Optics express.

[115]  P. Russell,et al.  Four-wave mixing instabilities in photonic-crystal and tapered fibers. , 2003, Physical review. E, Statistical, nonlinear, and soft matter physics.

[116]  Marc Haelterman,et al.  Modulational instability induced by cavity boundary conditions in a normally dispersive optical fiber , 1997 .

[117]  F. Krausz Attosecond Physics , 2007, 2007 Conference on Lasers and Electro-Optics - Pacific Rim.

[118]  F. Wise,et al.  Generation of 8 nJ pulses from a dissipative-soliton fiber laser with a nonlinear optical loop mirror. , 2013, Optics letters.

[119]  Chinlon Lin,et al.  New nanosecond continuum for excited-state spectroscopy , 1976 .

[120]  Alexander L. Gaeta,et al.  Effects of multiphoton absorption on parametric comb generation in silicon microresonators , 2014, 2014 Conference on Lasers and Electro-Optics (CLEO) - Laser Science to Photonic Applications.

[121]  S. Wabnitz,et al.  Pulse generation without gain-bandwidth limitation in a laser with self-similar evolution , 2012, Optics express.

[122]  Yanne K Chembo,et al.  Spectrum and dynamics of optical frequency combs generated with monolithic whispering gallery mode resonators. , 2010, Physical review letters.

[123]  A. Stentz,et al.  Visible continuum generation in air–silica microstructure optical fibers with anomalous dispersion at 800 nm , 2000 .

[124]  L. Hollberg,et al.  Phase-coherent link from optical to microwave frequencies by means of the broadband continuum from a 1-GHz Ti:sapphire femtosecondoscillator. , 2002, Optics letters.

[125]  Robert R. Alfano,et al.  The Supercontinuum Laser Source , 1989 .

[126]  S. Coen,et al.  Ultraweak long-range interactions of solitons observed over astronomical distances , 2013, Nature Photonics.

[127]  M. Gorodetsky,et al.  Temporal solitons in optical microresonators , 2012, Nature Photonics.

[128]  Miro Erkintalo,et al.  Coherence properties of Kerr frequency combs. , 2013, Optics letters.

[129]  T. Hansson,et al.  Mid-infrared soliton and Raman frequency comb generation in silicon microrings. , 2014, Optics Letters.

[130]  Günter Steinmeyer,et al.  Carrier-envelope offset phase control: A novel concept for absolute optical frequency measurement and ultrashort pulse generation , 1999 .

[131]  N. Akhmediev,et al.  Solitons of the Complex Ginzburg-Landau Equation , 2001 .

[132]  John M Dudley,et al.  Coherence properties of supercontinuum spectra generated in photonic crystal and tapered optical fibers. , 2002, Optics letters.

[133]  Yi Yu,et al.  Nonlinear absorption and refraction in crystalline silicon in the mid‐infrared , 2013 .

[134]  S. Coen,et al.  Temporal cavity solitons in one-dimensional Kerr media as bits in an all-optical buffer , 2010 .

[135]  Philippe Marcq,et al.  Exact solutions of the one-dimensional quintic complex Ginzburg-Landau equation , 1993, patt-sol/9310004.

[136]  G. Town,et al.  Optical Fiber Soliton Lasers , 2002 .

[137]  Walter Koechner,et al.  Solid-State Laser Engineering , 1976 .

[138]  Roger H. Stolen,et al.  Development of the stimulated Raman spectrum in single-mode silica fibers , 1984 .

[139]  Qiang Lin,et al.  Soliton fission and supercontinuum generation in silicon waveguides. , 2007, Optics letters.

[140]  Bowen Liu,et al.  Enhanced spectral breathing for sub-25 fs pulse generation in a Yb-fiber laser. , 2013, Optics letters.

[141]  A. Mussot,et al.  Significant reduction of power fluctuations at the long-wavelength edge of a supercontinuum generated in solid-core photonic bandgap fibers. , 2010, Optics express.

[142]  J. Kutz,et al.  Solitons and Ultra‐Short Optical Waves: The Short‐Pulse Equation Versus the Nonlinear Schrödinger Equation , 2013 .

[143]  James G. Fujimoto,et al.  Analytic theory of additive pulse and Kerr lens mode locking , 1992 .

[144]  Neil G. R. Broderick,et al.  120 fs, 4.2 nJ pulses from an all-normal-dispersion, polarization-maintaining, fiber laser , 2013 .

[145]  R. Lefever,et al.  Spatial dissipative structures in passive optical systems. , 1987, Physical review letters.

[146]  Jurgen Michel,et al.  Intra-Cavity Dispersion of Microresonators and its Engineering for Octave-Spanning Kerr Frequency Comb Generation , 2014, IEEE Journal of Selected Topics in Quantum Electronics.

[147]  Band-structure determination for finite 3-D photonic crystals , 2005 .

[148]  H. Haus Mode-locking of lasers , 2000, IEEE Journal of Selected Topics in Quantum Electronics.

[149]  K. Cossel,et al.  Ultrabroadband coherent supercontinuum frequency comb , 2011, 1105.2093.

[150]  Neil G. R. Broderick,et al.  Raman rogue waves in a long cavity passively mode-locked fiber laser , 2014, 2014 Conference on Lasers and Electro-Optics (CLEO) - Laser Science to Photonic Applications.

[151]  U. Heinzmann,et al.  Attosecond metrology , 2007, Nature.

[152]  Scott A. Diddams,et al.  The evolving optical frequency comb [Invited] , 2010 .

[153]  R. Holzwarth,et al.  Mid-infrared optical frequency combs at 2.5 μm based on crystalline microresonators , 2013, Nature Communications.

[154]  H. Driel,et al.  Two-photon absorption and Kerr coefficients of silicon for 850–2200nm , 2007 .

[155]  Shaul Pearl,et al.  Three photon absorption in silicon for 2300–3300nm , 2008 .

[156]  C. Nam,et al.  Carrier-envelope phase stabilization of femtosecond lasers by the direct locking method , 2012 .

[157]  Miro Erkintalo,et al.  Temporal tweezing of light through the trapping and manipulation of temporal cavity solitons , 2014, Nature Communications.

[158]  Wolfgang Freude,et al.  Optimally coherent Kerr combs generated with crystalline whispering gallery mode resonators for ultrahigh capacity fiber communications. , 2015, Physical review letters.

[159]  Miro Erkintalo,et al.  Raman rogue waves in a partially mode-locked fiber laser. , 2014, Optics letters.

[160]  J. Nathan Kutz,et al.  Mode-Locked Soliton Lasers , 2006, SIAM Rev..

[161]  F. W. Wise,et al.  Pulse Shaping and Evolution in Normal-Dispersion Mode-Locked Fiber Lasers , 2012, IEEE Journal of Selected Topics in Quantum Electronics.

[162]  Jörg Neumann,et al.  Sub-80-fs pulses from an all-fiber-integrated dissipative-soliton laser at 1 µm. , 2011, Optics express.

[163]  P. C. Hohenberg,et al.  Fronts, pulses, sources and sinks in generalized complex Ginzberg-Landau equations , 1992 .

[164]  Yoshitomo Okawachi,et al.  Theoretical and experimental investigation of broadband cascaded four-wave mixing in high-Q microspheres. , 2009, Optics express.

[165]  J. Kumar,et al.  A new guest-host system: towards stable second-order optical nonlinearity , 1992 .

[166]  Hermann A. Haus,et al.  Stretched-Pulse Additive Pulse Mode-Locking in Fiber , 1994 .

[167]  A. Matsko,et al.  Low threshold optical oscillations in a whispering gallery mode CaF(2) resonator. , 2004, Physical review letters.

[168]  Hall,et al.  Direct link between microwave and optical frequencies with a 300 THz femtosecond laser comb , 2000, Physical review letters.

[169]  K. Tsia,et al.  Manipulating supercontinuum generation by minute continuous wave. , 2011, Optics letters.

[170]  A. Mills,et al.  CARRIER-ENVELOPE PHASE STABILIZATION , 2009 .

[171]  Miro Erkintalo,et al.  Universal scaling laws of Kerr frequency combs. , 2013, Optics letters.

[172]  Ammar Hideur,et al.  Experimental and theoretical study of the passively mode-locked ytterbium-doped double-clad fiber laser , 2002, nlin/0410025.

[173]  Younes Messaddeq,et al.  Broadband supercontinuum generation in all-normal dispersion chalcogenide microwires , 2015 .

[174]  Theodor W. Hänsch,et al.  Absolute Optical Frequency Measurement of the Cesium D 1 Line with a Mode-Locked Laser , 1999 .

[175]  N. Yu,et al.  Modal expansion approach to optical-frequency-comb generation with monolithic whispering-gallery-mode resonators , 2010 .

[176]  Frank W. Wise,et al.  Dissipative solitons in normal-dispersion fiber lasers , 2008 .

[177]  M. Lipson,et al.  Octave-spanning mid-infrared supercontinuum generation in silicon nanowaveguides. , 2014, Optics letters.

[178]  R. Zuhr,et al.  Picosecond nonlinear optical response of a Cu:silica nanocluster composite. , 1993, Optics letters.

[179]  Mohamed Salhi,et al.  Theoretical study of the erbium-doped fiber laser passively mode-locked by nonlinear polarization rotation , 2003 .

[180]  G. Agrawal,et al.  Nonlinear optical phenomena in silicon waveguides: modeling and applications. , 2007, Optics express.

[181]  S. Diddams,et al.  Standards of Time and Frequency at the Outset of the 21st Century , 2004, Science.

[182]  Hermann A. Haus,et al.  Soliton versus nonsoliton operation of fiber ring lasers , 1994 .

[183]  Hall,et al.  Carrier-envelope phase control of femtosecond mode-locked lasers and direct optical frequency synthesis , 2000, Science.

[184]  C. Menyuk,et al.  Boundary tracking algorithms for determining the stability of mode-locked pulses , 2014 .

[185]  Akhmediev,et al.  Singularities and special soliton solutions of the cubic-quintic complex Ginzburg-Landau equation. , 1996, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[186]  Dumitru Mihalache,et al.  Few-optical-cycle solitons: Modified Korteweg-de Vries sine-Gordon equation versus other non-slowly-varying-envelope-approximation models , 2009 .

[187]  Benjamin J Eggleton,et al.  Silicon-on-sapphire pillar waveguides for Mid-IR supercontinuum generation. , 2015, Optics express.

[188]  C. Coste,et al.  Nonlinear Schrödinger equation and superfluid hydrodynamics , 1998 .

[189]  Coherent backscattering of light with nonlinear atomic scatterers (17 pages) , 2006 .

[190]  I. Ilev,et al.  Highly efficient wideband continuum generation in a single-mode optical fiber by powerful broadband laser pumping. , 1996, Applied optics.

[191]  Miro Erkintalo,et al.  Mode-locked femtosecond all-normal all-PM Yb-doped fiber laser using a nonlinear amplifying loop mirror. , 2012, Optics express.

[192]  Alexander Hartung,et al.  Coherent octave spanning near-infrared and visible supercontinuum generation in all-normal dispersion photonic crystal fibers. , 2011, Optics express.

[193]  Ming Yan,et al.  An octave-spanning mid-infrared frequency comb generated in a silicon nanophotonic wire waveguide , 2014, Nature Communications.

[194]  Feng Li,et al.  Dual transmission filters for enhanced energy in mode-locked fiber lasers. , 2011, Optics express.

[195]  Sergei K. Turitsyn,et al.  Dispersion-managed solitons in fibre systems and lasers , 2012 .

[196]  D. H. Peregrine,et al.  Water waves, nonlinear Schrödinger equations and their solutions , 1983, The Journal of the Australian Mathematical Society. Series B. Applied Mathematics.

[197]  Miro Erkintalo,et al.  Environmentally stable all-PM all-fiber giant chirp oscillator. , 2012, Optics express.

[198]  Jinhui Yuan,et al.  Highly coherent supercontinuum generation with picosecond pulses by using self-similar compression. , 2014, Optics express.

[199]  T. Nishikawa,et al.  Carrier-envelope offset locking with a 2f-to-3f self-referencing interferometer using a dual-pitch PPLN ridge waveguide. , 2014, Optics express.

[200]  J G Fujimoto,et al.  Generation of 5-fs pulses and octave-spanning spectra directly from a Ti:sapphire laser. , 2001, Optics letters.

[201]  David J. Richardson,et al.  High power fiber lasers: current status and future perspectives [Invited] , 2010 .

[202]  Francesco Poletti,et al.  Supercontinuum generation at 1.06 mum in holey fibers with dispersion flattened profiles. , 2006, Optics express.

[203]  P. Grelu,et al.  Dissipative solitons for mode-locked lasers , 2012, Nature Photonics.

[204]  F. Wise,et al.  Femtosecond fiber lasers with pulse energies above 10 nJ. , 2005, Optics letters.

[205]  K. Vahala,et al.  Supercontinuum generation in an on-chip silica waveguide. , 2014, Optics letters.

[206]  F. Wise,et al.  Generation of ten-cycle pulses from an ytterbium fiber laser with cubic phase compensation. , 2006, Optics letters.

[207]  RICK TREBINO,et al.  Measuring Ultrashort Laser Pulses , 2001 .

[208]  J. Fujimoto,et al.  Nonlinear Optics with Phase-Controlled Pulses in the Sub-Two-Cycle Regime , 2001 .

[209]  Zhigang Zhang,et al.  37.4 fs pulse generation in an Er:fiber laser at a 225 MHz repetition rate. , 2010, Optics letters.

[210]  N. Akhmediev,et al.  Dissipative Solitons in the Complex Ginzburg-Landau and Swift Hohenberg Equations , 2005 .

[211]  D. Mihalache,et al.  Models for supercontinuum generation beyond the slowly-varying-envelope approximation , 2014 .